Nonlinear heat transport between the stack and the heat-exchangers of standing-wave thermoacoustic refrigerators

Author(s):  
Ph. Blanc-Benon ◽  
A. Berson ◽  
Bengt Enflo ◽  
Claes M. Hedberg ◽  
Leif Kari
Author(s):  
Xiuzhen Li ◽  
Lin Wang ◽  
Rong Feng ◽  
Zhanwei Wang ◽  
Shijie Liu ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4360
Author(s):  
Umar Nawaz Bhatti ◽  
Salem Bashmal ◽  
Sikandar Khan ◽  
Rached Ben-Mansour

Thermoacoustic refrigerators have huge potential to replace conventional refrigeration systems as an alternative clean refrigeration technology. These devices utilize conversion of acoustic power and heat energy to generate the desired cooling. The stack plays a pivotal role in the performance of Standing Wave Thermoacoustic Refrigerators (SWTARs), as the heat transfer takes place across it. Performance of stacks can be significantly improved by making an arrangement of different materials inside the stack, resulting in anisotropic thermal properties along the length. In the present numerical study, the effect of multi-layered stack on the refrigeration performance of a SWTAR has been evaluated in terms of temperature drop across the stack, acoustic power consumed and device Coefficient of Performance (COP). Two different aspects of multi-layered stack, namely, different material combinations and different lengths of stacked layers, have been investigated. The combinations of four stack materials and length ratios have been investigated. The numerical results showed that multi-layered stacks produce lower refrigeration temperatures, consume less energy and have higher COP value than their homogeneous counterparts. Among all the material combinations of multi-layered stack investigated, stacks composed of a material layer with low thermal conductivity at the ends, i.e., RVC, produced the best performance with an increase of 26.14% in temperature drop value, reduction in the acoustic power consumption by 4.55% and COP enhancement of 5.12%. The results also showed that, for a constant overall length, an increase in length of side stacked material layer results in an increase in values of both temperature drop and COP.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950008 ◽  
Author(s):  
B. G. Prashantha ◽  
S. Seetharamu ◽  
G. S. V. L. Narasimham ◽  
M. R. Praveen Kumar

In this paper, the design of 50 W thermoacoustic refrigerators operating with air as working substance at 10 bar pressure and 3% drive ratio for a temperature difference of 28 K is described. The design strategies discussed in this paper help in design and development of low cost thermoacoustic coolers compared to helium as the working substance. The design and optimization of spiral stack and heat exchangers, and the promising 0.2[Formula: see text] and 0.15[Formula: see text] resonator design with taper and divergent section with hemispherical end are discussed. The surface area, volume, length and power density of the hemispherical end design with air as working substance is found better compared to the published 10 and 50 W coolers using helium as the working substance. The theoretical design results are validated using DeltaEC software simulation results. The DeltaEC predicts 51.4% improvement in COP (1.273) at the cold heat exchanger temperature of [Formula: see text]C with air as working substance for the 50[Formula: see text]W 0.15[Formula: see text]TDH resonator design compared to the published 50[Formula: see text]W 0.25[Formula: see text]TDH resonator design with helium as working substance.


2017 ◽  
Vol 38 (4) ◽  
pp. 89-107 ◽  
Author(s):  
Jakub Kajurek ◽  
Artur Rusowicz ◽  
Andrzej Grzebielec

Abstract Thermoacoustic refrigerator uses acoustic power to transport heat from a low-temperature source to a high-temperature source. The increasing interest in thermoacoustic technology is caused due to its simplicity, reliability as well as application of environmentally friendly working fluids. A typical thermoacoustic refrigerator consists of a resonator, a stack of parallel plates, two heat exchangers and a source of acoustic wave. The article presents the influence of the stack position in the resonance tube and the acoustic frequency on the performance of thermoacoustic refrigerator with a standing wave driven by a loudspeaker, which is measured in terms of the temperature difference between the stack edges. The results from experiments, conducted for the stack with the plate spacing 0.3 mm and the length 50 mm, acoustic frequencies varying between 100 and 400 Hz and air as a working fluid are consistent with the theory presented in this paper. The experiments confirmed that the temperature difference for the stack with determined plate spacing depends on the acoustic frequency and the stack position. The maximum values were achieved for resonance frequencies and the stack position between the pressure and velocity node.


2004 ◽  
Vol 126 (3) ◽  
pp. 425-433 ◽  
Author(s):  
Manish Mishra ◽  
P. K. Das ◽  
Sunil Sarangi

Transient temperature response of the crossflow heat exchangers with finite wall capacitance and both fluids unmixed is investigated numerically for step, ramp and exponential perturbations provided in hot fluid inlet temperature. Effect of two-dimensional longitudinal conduction in separating sheet and axial dispersion in fluids on the transient response has been investigated. Conductive heat transport due to presence of axial dispersion in fluids have been analyzed in detail and shown that presence of axial dispersion in both of the fluid streams neutralizes the total conductive heat transport during the energy balance. It has also been shown that the presence of axial dispersion of high order reduces the effect of longitudinal conduction.


Sign in / Sign up

Export Citation Format

Share Document