Processing and near-field optical properties of self-assembled plasmonic nanoparticle networks

2009 ◽  
Vol 130 (3) ◽  
pp. 034702 ◽  
Author(s):  
Frédéric Bonell ◽  
Audrey Sanchot ◽  
Erik Dujardin ◽  
Renaud Péchou ◽  
Christian Girard ◽  
...  
2021 ◽  
Vol 22 (19) ◽  
pp. 10595
Author(s):  
Vasanthan Devaraj ◽  
Jong-Min Lee ◽  
Ye-Ji Kim ◽  
Hyuk Jeong ◽  
Jin-Woo Oh

We reveal the significance of plasmonic nanoparticle’s (NP) shape and its surface morphology en route to an efficient self-assembled plasmonic nanoparticle cluster. A simplified model is simulated in the form of free-space dimer and trimer nanostructures (NPs in the shape of a sphere, cube, and disk). A ~200% to ~125% rise in near-field strength (gap mode enhancement) is observed for spherical NPs in comparison with cubical NPs (from 2 nm to 8 nm gap sizes). Full-width three-quarter maximum reveals better broad-spectral optical performance in a range of ~100 nm (dimer) and ~170 nm (trimer) from spherical NPs as compared to a cube (~60 nm for dimer and trimer). These excellent properties for sphere-based nanostructures are merited from its dipole mode characteristics.


2006 ◽  
Vol 97 (10) ◽  
Author(s):  
Christian Girard ◽  
Erik Dujardin ◽  
Mei Li ◽  
Stephen Mann

2015 ◽  
Vol 112 (33) ◽  
pp. 10292-10297 ◽  
Author(s):  
Michael B. Ross ◽  
Jessie C. Ku ◽  
Martin G. Blaber ◽  
Chad A. Mirkin ◽  
George C. Schatz

Bottom-up assemblies of plasmonic nanoparticles exhibit unique optical effects such as tunable reflection, optical cavity modes, and tunable photonic resonances. Here, we compare detailed simulations with experiment to explore the effect of structural inhomogeneity on the optical response in DNA-gold nanoparticle superlattices. In particular, we explore the effect of background environment, nanoparticle polydispersity (>10%), and variation in nanoparticle placement (∼5%). At volume fractions less than 20% Au, the optical response is insensitive to particle size, defects, and inhomogeneity in the superlattice. At elevated volume fractions (20% and 25%), structures incorporating different sized nanoparticles (10-, 20-, and 40-nm diameter) each exhibit distinct far-field extinction and near-field properties. These optical properties are most pronounced in lattices with larger particles, which at fixed volume fraction have greater plasmonic coupling than those with smaller particles. Moreover, the incorporation of experimentally informed inhomogeneity leads to variation in far-field extinction and inconsistent electric-field intensities throughout the lattice, demonstrating that volume fraction is not sufficient to describe the optical properties of such structures. These data have important implications for understanding the role of particle and lattice inhomogeneity in determining the properties of plasmonic nanoparticle lattices with deliberately designed optical properties.


Nanoscale ◽  
2019 ◽  
Vol 11 (37) ◽  
pp. 17444-17459 ◽  
Author(s):  
Jing He ◽  
Chang He ◽  
Chao Zheng ◽  
Qian Wang ◽  
Jian Ye

Ultrafast and computing resource-saving prediction of the far- and near-field optical properties of plasmonic nanoparticles and inverse design of their dimensions from the far-field spectra can be realized using machine learning.


Author(s):  
Vasanthan Devaraj ◽  
Jong-Min Lee ◽  
Ye-ji Kim ◽  
Hyuk Jeong ◽  
Jin-Woo Oh

We reveal the significance of plasmonic nanoparticle’s (NP) shape and its surface morphology en route to an efficient self-assembled plasmonic nanoparticle cluster. A simplified model is simulated in the form of free-space dimer and trimer nanostructures (NPs in shape of sphere, cube, and disk). A ~ 200 % to ~ 125% raise in near field strength (gap mode enhancement) is observed for spherical NPs in comparison with cubical NPs (from 2 nm to 8 nm gap sizes). Full-width three-quarter maximum reveals better broad-spectral optical performance in a range of ~ 100 nm (dimer) and ~ 170 nm (trimer) from spherical NPs as compared to a cube (~ 60 nm for dimer and trimer). These excellent properties for sphere-based nanostructures are merited from its dipole mode characteristics.


Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 2097-2105
Author(s):  
Xiaozhuo Qi ◽  
Tsz Wing Lo ◽  
Di Liu ◽  
Lantian Feng ◽  
Yang Chen ◽  
...  

AbstractPlasmonic nanocavities comprised of metal film-coupled nanoparticles have emerged as a versatile nanophotonic platform benefiting from their ultrasmall mode volume and large Purcell factors. In the weak-coupling regime, the particle-film gap thickness affects the photoluminescence (PL) of quantum emitters sandwiched therein. Here, we investigated the Purcell effect-enhanced PL of monolayer MoS2 inserted in the gap of a gold nanoparticle (AuNP)–alumina (Al2O3)–gold film (Au Film) structure. Under confocal illumination by a 532 nm CW laser, we observed a 7-fold PL peak intensity enhancement for the cavity-sandwiched MoS2 at an optimal Al2O3 thickness of 5 nm, corresponding to a local PL enhancement of ∼350 by normalizing the actual illumination area to the cavity’s effective near-field enhancement area. Full-wave simulations reveal a counterintuitive fact that radiation enhancement comes from the non-central area of the cavity rather than the cavity center. By scanning an electric dipole across the nanocavity, we obtained an average radiation enhancement factor of about 65 for an Al2O3 spacer thickness of 4 nm, agreeing well with the experimental thickness and indicating further PL enhancement optimization. Our results indicate the importance of configuration optimization, emitter location and excitation condition when using such plasmonic nanocavities to modulate the radiation properties of quantum emitters.


2005 ◽  
Vol 284 (3-4) ◽  
pp. 306-312 ◽  
Author(s):  
Yuan-Li Wang ◽  
Yong-Hai Chen ◽  
Ju Wu ◽  
Wen Lei ◽  
Zhan-Guo Wang ◽  
...  

Science ◽  
2010 ◽  
Vol 328 (5982) ◽  
pp. 1135-1138 ◽  
Author(s):  
J. A. Fan ◽  
C. Wu ◽  
K. Bao ◽  
J. Bao ◽  
R. Bardhan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document