scholarly journals Morphological instability of the solid-liquid interface in crystal growth under supercooled liquid film flow and natural convection airflow

2010 ◽  
Vol 22 (1) ◽  
pp. 017102 ◽  
Author(s):  
Kazuto Ueno ◽  
Masoud Farzaneh
2010 ◽  
Vol 129-131 ◽  
pp. 1308-1312
Author(s):  
Ya Hong Zheng ◽  
Yan Lin Wang ◽  
Zi Dong Wang

In the crystal growth process, the temperature distribution and concentration distribution at the solid-liquid interface edge are always the hot problems. In this paper, we study the concentration distribution at the solid-liquid interface edge under the natural convection conditions, we find that the concentration field is oscillating exponential decline or rose along the crystal growth direction. We also study the dendrite morphology of Al-La alloys using the experimental method, the results show that the microstructure of Al-35%La alloys is different from the common microstructure of hypereutectic alloy during the conventional casting process, the first crystalline phase is Al11La3, which composition is discontinuous along the growth direction, the main dendrite is composed of α-Al alternating with Al11La3, the results of SEM and XRD show that the chemical composition along the main dendrite exhibits periodic behavior, therefore, this microstructure is named as periodic diphase dendrite structure.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Xia Tang ◽  
Botao Liu ◽  
Yue Yu ◽  
Sheng Liu ◽  
Bing Gao

The difficulties in growing large-size bulk β-Ga2O3 single crystals with the Czochralski method were numerically analyzed. The flow and temperature fields for crystals that were four and six inches in diameter were studied. When the crystal diameter is large and the crucible space becomes small, the flow field near the crystal edge becomes poorly controlled, which results in an unreasonable temperature field, which makes the interface velocity very sensitive to the phase boundary shape. The effect of seed rotation with increasing crystal diameter was also studied. With the increase in crystal diameter, the effect of seed rotation causes more uneven temperature distribution. The difficulty of growing large-size bulk β-Ga2O3 single crystals with the Czochralski method is caused by spiral growth. By using dynamic mesh technology to update the crystal growth interface, the calculation results show that the solid–liquid interface of the four-inch crystal is slightly convex and the center is slightly concave. With the increase of crystal growth time, the symmetry of cylindrical crystal will be broken, which will lead to spiral growth. The numerical results of the six-inch crystal show that the whole solid–liquid interface is concave and unstable, which is not conducive to crystal growth.


1994 ◽  
Vol 29 (15) ◽  
pp. 3997-4000 ◽  
Author(s):  
Wang Fengquan ◽  
Chen Shiyu ◽  
He Deping ◽  
Wei Bingbo ◽  
Shu Guangji

2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Hassan M. S. Al-Sarrach ◽  
Ghalib Y. Kahwaji ◽  
Mohamed A. Samaha

The freezing of water around immersed unfinned and finned horizontal tubes is simulated numerically. The impact of natural convection as well as the water density inversion with temperature is considered. The equations governing both fluid flow and heat transfer around the tubes and through the solid–liquid interface are solved using finite difference schemes. To follow the moving solid–liquid boundary, dynamic grid generation is performed using the elliptic partial differential equation method with iterative interpolating smoothing to avoid divergence. For validation, the present results for unfinned tubes are compared with experimental studies reported in the literature. The present numerical simulations are aimed at improving our understanding of the parameters affecting the freezing process around both finned and unfinned tubes. The results showed that the flow patterns are similar in both tube configurations with one main vortex in the liquid region when there is no inversion in the water density. The presence of fins complicates the distribution of local Nusselt number along the solid–liquid interface in comparison with the unfinned tube. The impact of natural convection on the rate of ice formation is limited to the initial period of the freezing process. The results also show the freezing enhancement when utilizing fins. An accumulated ice mass correlation is developed for each tube configuration. This model can be used to optimize the design of both finned and unfinned tubes in energy storage systems, which are viable tools for air conditioning load shifting and leveling.


1988 ◽  
Author(s):  
S B. Trivedi ◽  
T S. Ananthanarayanan ◽  
R G. Rosemeier ◽  
J J. Kennedy

Author(s):  
J. M. Howe

A number of different theoretical approaches have been used to model the atomic structure and properties of solid-liquid interfaces. Most calculations indicate that ordering occurs in the first several layers of the liquid, adjacent to the crystal surface. In contrast to the numerous theoretical investigations, there have been no direct experimental observations of the atomic structure of a solid-liquid interface for comparison. Saka et al. examined solid-liquid interfaces in In and In-Sb at lattice-fringe resolution in the TEM, but their data do not reveal information about the atomic structure of the liquid phase. The purpose of this study is to determine the atomic structure of a solid-liquid interface using a highly viscous supercooled liquid, i.e., a crystal-amorphous interface.


Sign in / Sign up

Export Citation Format

Share Document