Energy band‐gap bowing parameter in an AlxGa1−xN alloy

1987 ◽  
Vol 61 (9) ◽  
pp. 4540-4543 ◽  
Author(s):  
Y. Koide ◽  
H. Itoh ◽  
M. R. H. Khan ◽  
K. Hiramatu ◽  
N. Sawaki ◽  
...  
2009 ◽  
Vol 610-613 ◽  
pp. 598-603
Author(s):  
Lan Zhao ◽  
Zheng Xiong Lu ◽  
Cai Jing Cheng ◽  
De Gang Zhao ◽  
Jian Jun Zhu ◽  
...  

The correlation between the energy band-gap of AlxGa1-xN epitaxial thin films and lattice strain was investigated using both High Resolution X-ray Diffraction (HRXRD) and Spectroscopic Ellipsometry (SE). The Al fraction, lattice relaxation, and elastic lattice strain were determined for all AlxGa1-xN epilayers, and the energy gap as well. Given the type of intermediate layer, a correlation trend was found between energy band-gap bowing parameter and lattice mismatch, the higher the lattice mismatch is, the smaller the bowing parameter (b) will be.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1512
Author(s):  
Changho Seo ◽  
Seongsoo Cho ◽  
Je Huan Koo
Keyword(s):  
Band Gap ◽  

We investigate why normal electrons in superconductors have no resistance. Under the same conditions, the band gap is reduced to zero as well, but normal electrons at superconducting states are condensed into this virtual energy band gap.


2008 ◽  
Vol 3 ◽  
pp. 97-102 ◽  
Author(s):  
Dinu Patidar ◽  
K.S. Rathore ◽  
N.S. Saxena ◽  
Kananbala Sharma ◽  
T.P. Sharma

The CdS nanoparticles of different sizes are synthesized by a simple chemical method. Here, CdS nanoparticles are grown through the reaction of solution of different concentration of CdCl2 with H2S. X-ray diffraction pattern confirms nano nature of CdS and has been used to determine the size of particle. Optical absorption spectroscopy is used to measure the energy band gap of these nanomaterials by using Tauc relation. Energy band gap ranging between 3.12 eV to 2.47 eV have been obtained for the samples containing the nanoparticles in the range of 2.3 to 6.0 nm size. A correlation between the band gap and size of the nanoparticles is also established.


2020 ◽  
pp. 111059
Author(s):  
B. Thapa ◽  
P.K. Patra ◽  
Sandeep Puri ◽  
K. Neupane ◽  
A. Shankar

2000 ◽  
Vol 214-215 ◽  
pp. 350-354 ◽  
Author(s):  
Kyurhee Shim ◽  
Herschel Rabitz ◽  
Ji-Ho Chang ◽  
Takafumi Yao

Sign in / Sign up

Export Citation Format

Share Document