scholarly journals Hadamard matrices from mutually unbiased bases

2010 ◽  
Vol 51 (7) ◽  
pp. 072202 ◽  
Author(s):  
P. Diţă
Author(s):  
Mengfan Liang ◽  
Mengyao Hu ◽  
Yize Sun ◽  
Lin Chen ◽  
Xiaoyu Chen

2005 ◽  
Vol 5 (2) ◽  
pp. 93-101
Author(s):  
P. Wocjan ◽  
T. Beth

We show that k=w+2 mutually unbiased bases can be constructed in any square dimension d=s^2 provided that there are w mutually orthogonal Latin squares of order s. The construction combines the design-theoretic objects (s,k)-nets (which can be constructed from w mutually orthogonal Latin squares of order s and vice versa) and generalized Hadamard matrices of size s. Using known lower bounds on the asymptotic growth of the number of mutually orthogonal Latin squares (based on number theoretic sieving techniques), we obtain that the number of mutually unbiased bases in dimensions d=s^2 is greater than s^{1/14.8} for all s but finitely many exceptions. Furthermore, our construction gives more mutually unbiased bases in many non-prime-power dimensions than the construction that reduces the problem to prime power dimensions.


2010 ◽  
Vol 10 (9&10) ◽  
pp. 803-820
Author(s):  
Stephen Brierley ◽  
Stefan Weigert ◽  
Ingemar Bengtsson

All complex Hadamard matrices in dimensions two to five are known. We use this fact to derive all inequivalent sets of mutually unbiased (MU) bases in low dimensions. We find a three-parameter family of triples of MU bases in dimension four and two inequivalent classes of MU triples in dimension five. We confirm that the complete sets of (d+1) MU bases are unique (up to equivalence) in dimensions below six, using only elementary arguments for d less than five.


10.37236/4915 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
Hadi Kharaghani ◽  
Sara Sasani ◽  
Sho Suda

It was shown by LeCompte, Martin, and Owens in 2010 that the existence of mutually unbiased Hadamard matrices and the identity matrix, which coincide with mutually unbiased bases, is equivalent to that of a $Q$-polynomial association scheme of class four which is both $Q$-antipodal and $Q$-bipartite.  We prove that the existence of a set of mutually unbiased Bush-type Hadamard matrices is equivalent to that of an association scheme of class five. As an application of this equivalence, we obtain an upper bound of the number of mutually unbiased Bush-type Hadamard matrices of order $4n^2$ to be $2n-1$. This is in contrast to the fact that the best general upper bound for the mutually unbiased Hadamard matrices of order $4n^2$ is $2n^2$. We also discuss a relation of our scheme to some fusion schemes which are $Q$-antipodal and $Q$-bipartite $Q$-polynomial of class $4$.


2010 ◽  
Vol 08 (04) ◽  
pp. 535-640 ◽  
Author(s):  
THOMAS DURT ◽  
BERTHOLD-GEORG ENGLERT ◽  
INGEMAR BENGTSSON ◽  
KAROL ŻYCZKOWSKI

Mutually unbiased bases for quantum degrees of freedom are central to all theoretical investigations and practical exploitations of complementary properties. Much is known about mutually unbiased bases, but there are also a fair number of important questions that have not been answered in full as yet. In particular, one can find maximal sets of N + 1 mutually unbiased bases in Hilbert spaces of prime-power dimension N = pM, with p prime and M a positive integer, and there is a continuum of mutually unbiased bases for a continuous degree of freedom, such as motion along a line. But not a single example of a maximal set is known if the dimension is another composite number (N = 6, 10, 12,…).In this review, we present a unified approach in which the basis states are labeled by numbers 0, 1, 2, …, N - 1 that are both elements of a Galois field and ordinary integers. This dual nature permits a compact systematic construction of maximal sets of mutually unbiased bases when they are known to exist but throws no light on the open existence problem in other cases. We show how to use the thus constructed mutually unbiased bases in quantum-informatics applications, including dense coding, teleportation, entanglement swapping, covariant cloning, and state tomography, all of which rely on an explicit set of maximally entangled states (generalizations of the familiar two–q-bit Bell states) that are related to the mutually unbiased bases.There is a link to the mathematics of finite affine planes. We also exploit the one-to-one correspondence between unbiased bases and the complex Hadamard matrices that turn the bases into each other. The ultimate hope, not yet fulfilled, is that open questions about mutually unbiased bases can be related to open questions about Hadamard matrices or affine planes, in particular the notorious existence problem for dimensions that are not a power of a prime.The Hadamard-matrix approach is instrumental in the very recent advance, surveyed here, of our understanding of the N = 6 situation. All evidence indicates that a maximal set of seven mutually unbiased bases does not exist — one can find no more than three pairwise unbiased bases — although there is currently no clear-cut demonstration of the case.


2007 ◽  
Vol 48 (5) ◽  
pp. 052106 ◽  
Author(s):  
Ingemar Bengtsson ◽  
Wojciech Bruzda ◽  
Åsa Ericsson ◽  
Jan-Åke Larsson ◽  
Wojciech Tadej ◽  
...  

Author(s):  
N. A. Balonin ◽  
M. B. Sergeev ◽  
J. Seberry ◽  
O. I. Sinitsyna

Introduction: The Hadamard conjecture about the existence of Hadamard matrices in all orders multiple of 4, and the Gauss problem about the number of points in a circle are among the most important turning points in the development of mathematics. They both stimulated the development of scientific schools around the world with an immense amount of works. There are substantiations that these scientific problems are deeply connected. The number of Gaussian points (Z3 lattice points) on a spheroid, cone, paraboloid or parabola, along with their location, determines the number and types of Hadamard matrices.Purpose: Specification of the upper and lower bounds for the number of Gaussian points (with odd coordinates) on a spheroid depending on the problem size, in order to specify the Gauss theorem (about the solvability of quadratic problems in triangular numbers by projections onto the Liouville plane) with estimates for the case of Hadamard matrices. Methods: The authors, in addition to their previous ideas about proving the Hadamard conjecture on the base of a one-to-one correspondence between orthogonal matrices and Gaussian points, propose one more way, using the properties of generalized circles on Z3 .Results: It is proved that for a spheroid, the lower bound of all Gaussian points with odd coordinates is equal to the equator radius R, the upper limit of the points located above the equator is equal to the length of this equator L=2πR, and the total number of points is limited to 2L. Due to the spheroid symmetry in the sector with positive coordinates (octant), this gives the values of R/8 and L/4. Thus, the number of Gaussian points with odd coordinates does not exceed the border perimeter and is no less than the relative share of the sector in the total volume of the figure.Practical significance: Hadamard matrices associated with lattice points have a direct practical significance for noise-resistant coding, compression and masking of video information.


2021 ◽  
Vol 7 (7) ◽  
pp. eabc3847
Author(s):  
Armin Tavakoli ◽  
Máté Farkas ◽  
Denis Rosset ◽  
Jean-Daniel Bancal ◽  
Jedrzej Kaniewski

Mutually unbiased bases (MUBs) and symmetric informationally complete projectors (SICs) are crucial to many conceptual and practical aspects of quantum theory. Here, we develop their role in quantum nonlocality by (i) introducing families of Bell inequalities that are maximally violated by d-dimensional MUBs and SICs, respectively, (ii) proving device-independent certification of natural operational notions of MUBs and SICs, and (iii) using MUBs and SICs to develop optimal-rate and nearly optimal-rate protocols for device-independent quantum key distribution and device-independent quantum random number generation, respectively. Moreover, we also present the first example of an extremal point of the quantum set of correlations that admits physically inequivalent quantum realizations. Our results elaborately demonstrate the foundational and practical relevance of the two most important discrete Hilbert space structures to the field of quantum nonlocality.


Sign in / Sign up

Export Citation Format

Share Document