Size of Cd(S,Se) quantum dots in glasses: Correlation between measurements by high‐resolution transmission electron microscopy, small‐angle x‐ray scattering, and low‐frequency inelastic Raman scattering

1993 ◽  
Vol 73 (6) ◽  
pp. 2775-2780 ◽  
Author(s):  
Bernard Champagnon ◽  
Bruno Andrianasolo ◽  
Aline Ramos ◽  
Madeleine Gandais ◽  
Mireille Allais ◽  
...  
Soft Matter ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. 3096-3104
Author(s):  
Valeria Castelletto ◽  
Jani Seitsonen ◽  
Janne Ruokolainen ◽  
Ian W. Hamley

A designed surfactant-like peptide is shown, using a combination of cryogenic-transmission electron microscopy and small-angle X-ray scattering, to have remarkable pH-dependent self-assembly properties.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joanna Korpanty ◽  
Lucas R. Parent ◽  
Nicholas Hampu ◽  
Steven Weigand ◽  
Nathan C. Gianneschi

AbstractHerein, phase transitions of a class of thermally-responsive polymers, namely a homopolymer, diblock, and triblock copolymer, were studied to gain mechanistic insight into nanoscale assembly dynamics via variable temperature liquid-cell transmission electron microscopy (VT-LCTEM) correlated with variable temperature small angle X-ray scattering (VT-SAXS). We study thermoresponsive poly(diethylene glycol methyl ether methacrylate) (PDEGMA)-based block copolymers and mitigate sample damage by screening electron flux and solvent conditions during LCTEM and by evaluating polymer survival via post-mortem matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). Our multimodal approach, utilizing VT-LCTEM with MS validation and VT-SAXS, is generalizable across polymeric systems and can be used to directly image solvated nanoscale structures and thermally-induced transitions. Our strategy of correlating VT-SAXS with VT-LCTEM provided direct insight into transient nanoscale intermediates formed during the thermally-triggered morphological transformation of a PDEGMA-based triblock. Notably, we observed the temperature-triggered formation and slow relaxation of core-shell particles with complex microphase separation in the core by both VT-SAXS and VT-LCTEM.


1965 ◽  
Vol 9 ◽  
pp. 59-73
Author(s):  
R. W. Gould ◽  
E. A. Starke

AbstractA study of the reversion process in Al-Zn-Mg alloys has been made using small-angle X-ray scattering and transmission electron microscopy techniques. The rate and mode of Guinier-Preston zone dissolutions was investigated as a function of magnesium content, prior zone radius, and reversion temperature. Results indicate that in this system the reversion process is characterized by the preferential dissolution of the smallest G-P zones present after cold aging with a corresponding decrease in the volume fraction of zones. The amount of reversion at a specific temperature is dependent on magnesium content, however, the rate of reversion is independent of magnesium content.


2009 ◽  
Vol 42 (6) ◽  
pp. 1085-1091 ◽  
Author(s):  
B. Roy ◽  
B. Karmakar ◽  
J. Bahadur ◽  
S. Mazumder ◽  
D. Sen ◽  
...  

A series of zinc oxide (ZnO) nanoparticles, substituted with manganese di-oxide, have been synthesized through a modified ceramic route using urea as a fuel. X-ray diffraction and high-resolution transmission electron microscopy studies indicate that the sizes of the ZnO particles are of nanometer dimension. Particles remain as single phase when the doping concentration is below 15 mol%. Small-angle neutron scattering indicates fractal-like agglomerates of these nanoparticles in powder form. The size distributions of the particles have been estimated from scattering experiments as well as microscopy studies. The average particle size estimated from small-angle scattering experiments was found to be somewhat more than that obtained from X-ray diffraction or electron microscopy measurement.


Sign in / Sign up

Export Citation Format

Share Document