Effect of graphitic carbon films on diamond nucleation by microwave‐plasma‐enhanced chemical‐vapor deposition

1993 ◽  
Vol 74 (4) ◽  
pp. 2841-2849 ◽  
Author(s):  
Z. Feng ◽  
K. Komvopoulos ◽  
I. G. Brown ◽  
D. B. Bogy
1995 ◽  
Vol 10 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Z. Feng ◽  
M.A. Brewer ◽  
K. Komvopoulos ◽  
I.G. Brown ◽  
D.B. Bogy

The efficacy of various non-diamond carbon films as precursors for diamond nucleation on unscratched silicon substrates was investigated with a conventional microwave plasma-enhanced chemical vapor deposition system. Silicon substrates were partially coated with various carbonaceous substances such as clusters consisting of a mixture of C60 and C70, evaporated films of carbon and pure C70, and hard carbon produced by a vacuum are deposition technique. For comparison, diamond nucleation on silicon substrates coated with submicrometer-sized diamond particles and uncoated smooth silicon surfaces was also examined under similar conditions. Except for evaporated carbon films, significantly higher diamond nucleation densities were obtained by subjecting the carbon-coated substrates to a low-temperature high-methane concentration hydrogen plasma treatment prior to diamond nucleation. The highest nucleation density (∼3 × 108 cm−2) was obtained with hard carbon films. Scanning electron microscopy and Raman spectroscopy demonstrated that the diamond nucleation density increased with the film thickness and etching resistance. The higher diamond nucleation density obtained with the vacuum are-deposited carbon films may be attributed to the inherent high etching resistance, presumably resulting from the high content of sp3 atomic bonds. Microscopy observations suggested that diamond nucleation in the presence of non-diamond carbon deposits resulted from carbon layers generated under the pretreatment conditions.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Weihua Wang ◽  
Bing Dai ◽  
Guoyang Shu ◽  
Yang Wang ◽  
Benjian Liu ◽  
...  

Diamond nucleation on iridium (001) substrates was investigated under different bias conditions. High-density epitaxial nucleation can be obtained in a narrow bias window. This paper reports both the typical nucleation...


2017 ◽  
Vol 24 (1&2) ◽  
pp. 191-197
Author(s):  
Pham Thi Minh Chau ◽  
Jung Il Jin

Poly(para-phenylenevinylene) [PPV] films and nanotubes were prepared via chemical vapor deposition polymerization (CVDP) by vapor phase pyrolysis of α, α'-dichloro p-xylene on the quartz plate, silicon wafers and Al2O3 membrane substrate with the pore size f = 100 nm. We prepared graphitic carbon films and carbon nanotubes by carbonizing the poly(para-phenylenevinylene) [PPV] films and nano parterns under thermal treatment range from 500°C to 900°C. When the PPV films on quartz plate were treated at 900°C highly oriented graphitic carbon films were obtained. The characterization of the PPV nanotube and nanotube carbon has been investigated by means of IR, SEM, AFM and Raman scattering study.


2008 ◽  
Vol 136 ◽  
pp. 153-160
Author(s):  
Agung Purniawan ◽  
E. Hamzah ◽  
M.R.M. Toff

Diamond is the hardest material and has high chemical resistant which is one form of carbon. In the present work a study was carried out on polycrystalline diamond coated Si3N4 substrate. The diamond was deposited by Microwave Plasma Assisted Chemical Vapor Deposition (MPACVD) under varying deposition parameters namely CH4 diluted in H2, microwave power and chamber pressure. SEM and AFM are used to investigate the surface morphology and surface roughness. Nucleation phenomena and crystal width were also studied using AFM. Based on SEM investigation it was found that the chamber pressure and %CH4 have more significant effects on nucleation and facet of polycrystalline diamond, In addition microwave power has an effect on the diamond facet that changed from cubic to cauliflower structure. Surface roughness results show that increasing the %CH4 has decreased surface roughness 334.83 to 269.99 nm at 1 to 3% CH4, respectively. Increasing microwave power leads to increase in diamond nucleation and coalescence which lead to less surface roughness. Increasing gas pressure may eliminate Si contamination however it reduces diamond nucleation.


Carbon ◽  
2010 ◽  
Vol 48 (5) ◽  
pp. 1552-1557 ◽  
Author(s):  
Marek Marcinek ◽  
Laurence J. Hardwick ◽  
Grażyna Z. Żukowska ◽  
Robert Kostecki

1992 ◽  
Vol 7 (2) ◽  
pp. 404-410 ◽  
Author(s):  
Bharat Bhushan ◽  
Andrew J. Kellock ◽  
Nam-Hee Cho ◽  
Joel W. Ager

Diamond-like (amorphous) carbon (DLC) films were prepared by dc magnetron sputtering and plasma enhanced chemical vapor deposition (PECVD) and diamond films were prepared by microwave plasma enhanced chemical vapor deposition (MPECVD). For the first time, chemical and mechanical characterization of the films from each category are carried out systematically and a comparison of the chemical and physical properties is provided. We find that DLC coatings produced by PECVD are superior in microhardness and modulus of elasticity to those produced by sputtering. PECVD films contain a larger fraction of sp3-bonding than the sputtered hydrogenated carbon films. Chemical and physical properties of the diamond films appear to be close to those of bulk diamond.


2005 ◽  
Vol 482 ◽  
pp. 203-206 ◽  
Author(s):  
O. Jašek ◽  
M. Eliáš ◽  
Z. Frgala ◽  
Jiřina Matějková ◽  
Antonín Rek ◽  
...  

Carbon based films on silicon substrates have been studied by high resolution FE SEM equipped by an EDS analyzer. The first type are carbon nanotube (CNT) [1] films prepared on Si/SiO2 substrates with Ni or Fe layers by radiofrequency plasma chemical vapor deposition. Dependence of nanotube films properties on Ni and Fe thickness and deposition conditions have been studied. The second type of films discussed are microcrystalline and nanocrystalline diamond films grown on pre-treated Si substrates by microwave plasma chemical vapor deposition (MPCVD). The pre-treatment was varied and its effect on diamond films was studied.


Sign in / Sign up

Export Citation Format

Share Document