Near-wall velocity structures that drive turbulent transport from a line source at the wall

2012 ◽  
Vol 24 (3) ◽  
pp. 035102 ◽  
Author(s):  
Anjani Kalyan Karna ◽  
Dimitrios V. Papavassiliou
2007 ◽  
Vol 42 (6) ◽  
pp. 843-846 ◽  
Author(s):  
Pierre Lancien ◽  
Éric Lajeunesse ◽  
François Métivier

Author(s):  
Michael D. Kestoras ◽  
Terrence W. Simon

Turbulence measurements for both momentum and heat transport are taken in a boundary layer over a flat, recovery wall downstream of a concave wall (R=0.97m). The boundary layer appears turbulent from the beginning of the concave wall and grows over the test wall with negligible streamwise acceleration. The strength of curvature at the bend exit, δ99.5/R, is 0.04. The free-stream turbulence intensity is ∼8% at the beginning of the curve and is nearly uniform at ∼4.5% throughout the recovery wall. Comparisons are made with data taken in an earlier study, in the same test facility, but with a low free-stream turbulence intensity (−0.6%). Results show that on the recovery wall, elevated free-stream turbulence intensity enhances turbulent transport quantities such as -uv¯ and vt¯ in most of the outer part of the boundary layer, but near-wall values of vt¯ remain unaffected. This is in contrast to near-wall vt¯ values within the curve which decrease when free-stream turbulence is increased. At the bend exit, decreases of -uv¯ and vt¯ due to removal of curvature become more profound when free-stream turbulence intensity is elevated, compared to low-TI behavior. Measurements in the core of the flow indicate that the high levels of cross transport of momentum over the upstream concave wall cease when curvature is removed. Other results show that turbulent Prandtl numbers over the recovery wall are reduced to −0.9 when free-stream turbulence intensity is elevated, consistent with the rise in Stanton numbers over the recovery wall.


Author(s):  
Hongyuan Li ◽  
Yufan Cao ◽  
Xiangyu Wang ◽  
Xia Wan ◽  
Yaolei Xiang ◽  
...  

Abstract To accurately measure the near-wall flow by particle image velocimetry (PIV) is a big challenge, especially for the slip boundary condition. Apart from high-precision measurements, an appropriate PIV algorithm is important to resolve the near-wall velocity profile. In our study, single-pixel algorithm is employed to calculate the near-wall flow, which is demonstrated to be capable of accurately resolving the flow velocity near the slip boundary condition. Based on the synthetic particle images, the advantages of the single-pixel algorithm are manifested in comparison with the conventional window correlation algorithm. Specially, the single-pixel algorithm has higher spatial resolution and accuracy, and lower systematic error and random error for the case of slip boundary condition. Furthermore, for experimental verification, micro-PIV measurements are conducted over a liquid-gas interface and the single-pixel algorithm is successfully applied to the calculation of near-wall velocity under the slip boundary condition, especially the negative slip velocity. The current work demonstrates the advantage of the single-pixel algorithm in analyzing the complex flow under the slip boundary condition, such as drag reduction, wall skin friction evaluation and near-wall vortex structure measurement.


Sign in / Sign up

Export Citation Format

Share Document