scholarly journals A new facility for fundamental particle physics: The high-intensity ultracold neutron source at the Paul Scherrer Institute

Author(s):  
Bernhard Lauss ◽  
UCN Project Team
2019 ◽  
Vol 20 (4) ◽  
pp. 83-86
Author(s):  
A. Anghel ◽  
G. Bison ◽  
B. Blau ◽  
M. Daum ◽  
N. Hild ◽  
...  

Author(s):  
Bernhard Lauss ◽  
Bertrand Blau

Ultracold neutrons provide a unique tool for the study of neutron properties. An overview is given of the ultracold neutron (UCN) source at PSI, which produces the highest UCN intensities to fundamental physics experiments by exploiting the high intensity proton beam in combination with the high UCN yield in solid deuterium at a temperature of 5 K. We briefly list important fundamental physics results based on measurements with neutrons at PSI.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1591
Author(s):  
Alessandro M. Baldini ◽  
Vladimir Baranov ◽  
Michele Biasotti ◽  
Gianluigi Boca ◽  
Paolo W. Cattaneo ◽  
...  

The MEG experiment took data at the Paul Scherrer Institute in the years 2009–2013 to test the violation of the lepton flavor conservation law, which originates from an accidental symmetry that the Standard Model of elementary particle physics has, and published the most stringent limit on the charged lepton flavor violating decay μ+→e+γ: BR(μ+→e+γ) <4.2×10−13 at 90% confidence level. The MEG detector has been upgraded in order to reach a sensitivity of 6×10−14. The basic principle of MEG II is to achieve the highest possible sensitivity using the full muon beam intensity at the Paul Scherrer Institute (7×107 muons/s) with an upgraded detector. The main improvements are better rate capability of all sub-detectors and improved resolutions while keeping the same detector concept. In this paper, we present the current status of the preparation, integration and commissioning of the MEG II detector in the recent engineering runs.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 72
Author(s):  
Clementina Agodi ◽  
Antonio D. Russo ◽  
Luciano Calabretta ◽  
Grazia D’Agostino ◽  
Francesco Cappuzzello ◽  
...  

The search for neutrinoless double-beta (0νββ) decay is currently a key topic in physics, due to its possible wide implications for nuclear physics, particle physics, and cosmology. The NUMEN project aims to provide experimental information on the nuclear matrix elements (NMEs) that are involved in the expression of 0νββ decay half-life by measuring the cross section of nuclear double-charge exchange (DCE) reactions. NUMEN has already demonstrated the feasibility of measuring these tiny cross sections for some nuclei of interest for the 0νββ using the superconducting cyclotron (CS) and the MAGNEX spectrometer at the Laboratori Nazionali del Sud (LNS.) Catania, Italy. However, since the DCE cross sections are very small and need to be measured with high sensitivity, the systematic exploration of all nuclei of interest requires major upgrade of the facility. R&D for technological tools has been completed. The realization of new radiation-tolerant detectors capable of sustaining high rates while preserving the requested resolution and sensitivity is underway, as well as the upgrade of the CS to deliver beams of higher intensity. Strategies to carry out DCE cross-section measurements with high-intensity beams were developed in order to achieve the challenging sensitivity requested to provide experimental constraints to 0νββ NMEs.


Sign in / Sign up

Export Citation Format

Share Document