e31 piezoelectric constant measurement of lead zirconate titanate thin films

1999 ◽  
Vol 86 (12) ◽  
pp. 7017-7023 ◽  
Author(s):  
E. Cattan ◽  
T. Haccart ◽  
D. Rémiens
Author(s):  
Qing Guo ◽  
G. Z. Cao ◽  
I. Y. Shen

Lead Zirconate Titanate Oxide (PbZrxTi1−xO3 or PZT) is a piezoelectric material widely used as sensors and actuators. For microactuators, PZT often appears in the form of thin films to maintain proper aspect ratios. This paper is to present a simple and low-cost method to measure piezoelectric constant d33 of PZT thin films, which is a major challenge encountered in the actuator development. We use an impact hammer with a sharp tip to generate an impulsive force that acts on the PZT film. The impulsive force and the responding voltage are then measured to calculate the piezoelectric constant d33. The impulsive force has large enough amplitude so that a good signal-to-noise ratio can be maintained. Furthermore, the impulsive force has extremely short duration, so the discharge effect (i.e., the time constant effect) of the PZT circuit can be ignored. Preliminary testing on bulk PZT through this new method leads to two conclusions. Firstly, boundary conditions of the specimen are critical. In particular, the specimen must be securely fastened. Since the impulsive load only acts on a tiny area, loose boundary conditions can introduce spurious results from other piezoelectric constant d31. Secondly, size of the specimen is critical. Specimen of smaller size leads to more accurate measurements of the piezoelectric constant d33.


2004 ◽  
Vol 830 ◽  
Author(s):  
Hiroshi Nakaki ◽  
Hiroshi Uchida ◽  
Shoji Okamoto ◽  
Shintaro Yokoyama ◽  
Hiroshi Funakubo ◽  
...  

ABSTRACTRare-earth-substituted tetragonal lead zirconate titanate thin films were synthesized for improving the ferroelectric property of conventional lead zirconate titanate. Thin films of Pb1.00REx (Zr0.40Ti0.60)1-(3x /4)O3 (x = 0.02, RE = Y, Dy, Er and Yb) were deposited on (111)Pt/Ti/SiO2/(100)Si substrates by a chemical solution deposition (CSD). B-site substitution using rare-earth cations described above enhanced the crystal anisotropy, i.e., ratio of PZT lattice parameters c/a. Remanent polarization (Pr) of PZT film was enhanced by Y3+-, Dy3+- and Er3+-substitution from 20 μC/cm2 up to 26, 25 and 26 μC/cm2 respectively, while ion substitution using Yb3+ degraded the Pr value down to 16 μC/cm2. These films had similar coercive fields (Ec) of around 100 kV/cm. Improving the ferroelectric property of PZT film by rare-earth-substitution would be ascribed to the enhancement of the crystal anisotropy. We concluded that ion substitution using some rare-earth cations, such as Y3+, Dy3+ or Er3+, is one of promising technique for improving the ferroelectric property of PZT film.


2003 ◽  
Vol 15 (5) ◽  
pp. 1147-1155 ◽  
Author(s):  
A. Wu ◽  
P. M. Vilarinho ◽  
I. Reaney ◽  
I. M. Miranda Salvado

1994 ◽  
Vol 17 (6) ◽  
pp. 1005-1014 ◽  
Author(s):  
S B Majumder ◽  
V N Kulkarni ◽  
Y N Mohapatra ◽  
D C Agrawal

1991 ◽  
Vol 74 (6) ◽  
pp. 1455-1458 ◽  
Author(s):  
Altaf H. Carim ◽  
Bruce A. Tuttle ◽  
Daniel H. Doughty ◽  
Sheri L. Martinez

Sign in / Sign up

Export Citation Format

Share Document