A re‐examination of the use of rate equations to account for fluence dependence, intramolecular relaxation, and unimolecular decay in laser driven polyatomic molecules.

1979 ◽  
Vol 71 (1) ◽  
pp. 408-414 ◽  
Author(s):  
James Stone ◽  
Myron F. Goodman
1990 ◽  
Vol 10 (3) ◽  
pp. 147-158
Author(s):  
V. Tosa ◽  
R. Bruzzese ◽  
C. de Lisio ◽  
S. Solimeno

We present in this paper a theoretical analysis of the vibrational translational (V-T) relaxation process in CH3F, carried out by using a numerical model based on rate equations. In particular, we have analysed the dependence of the V-T relaxation time on the average vibrational energy absorbed per molecule. We have also investigated the influence of the dependence of the rate constants used in the model, on the gas translational temperature. The results of the model clearly outline the strongly nonlinear character of the V-T relaxation process in CH3F, a situation commonly observed in other important polyatomic molecules of intermediate size each as SF6, freons, and related methylhalides.


1988 ◽  
Vol 102 ◽  
pp. 215
Author(s):  
R.M. More ◽  
G.B. Zimmerman ◽  
Z. Zinamon

Autoionization and dielectronic attachment are usually omitted from rate equations for the non–LTE average–atom model, causing systematic errors in predicted ionization states and electronic populations for atoms in hot dense plasmas produced by laser irradiation of solid targets. We formulate a method by which dielectronic recombination can be included in average–atom calculations without conflict with the principle of detailed balance. The essential new feature in this extended average atom model is a treatment of strong correlations of electron populations induced by the dielectronic attachment process.


Author(s):  
E. Holzäpfel ◽  
F. Phillipp ◽  
M. Wilkens

During in-situ radiation damage experiments aiming on the investigation of vacancy-migration properties interstitial-type dislocation loops are used as probes monitoring the development of the point defect concentrations. The temperature dependence of the loop-growth rate v is analyzed in terms of reaction-rate theory yielding information on the vacancy migration enthalpy. The relation between v and the point-defect production rate P provides a critical test of such a treatment since it is sensitive to the defect reactions which are dominant. If mutual recombination of vacancies and interstitials is the dominant reaction, vαP0.5 holds. If, however, annihilation of the defects at unsaturable sinks determines the concentrations, a linear relationship vαP is expected.Detailed studies in pure bcc-metals yielded vαPx with 0.7≾×≾1.0 showing that besides recombination of vacancies and interstitials annihilation at sinks plays an important role in the concentration development which has properly to be incorporated into the rate equations.


2000 ◽  
Vol 98 (21) ◽  
pp. 1763-1770 ◽  
Author(s):  
Vincenzo Aquilanti, Andrea Beddoni, Simonett

1981 ◽  
Vol 134 (5) ◽  
pp. 45 ◽  
Author(s):  
V.S. Letokhov ◽  
A.A. Makarov
Keyword(s):  

Author(s):  
J. Allègre ◽  
P. Lefebvre ◽  
J. Camassel ◽  
B. Beaumont ◽  
Pierre Gibart

Time-resolved photoluminescence spectra have been recorded on three GaN epitaxial layers of thickness 2.5 μm, 7 μm and 16 μm, at various temperatures ranging from 8K to 300K. The layers were deposited by MOVPE on (0001) sapphire substrates with standard AlN buffer layers. To achieve good homogeneities, the growth was in-situ monitored by laser reflectometry. All GaN layers showed sharp excitonic peaks in cw PL and three excitonic contributions were seen by reflectivity. The recombination dynamics of excitons depends strongly upon the layer thickness. For the thinnest layer, exponential decays with τ ~ 35 ps have been measured for both XA and XB free excitons. For the thickest layer, the decay becomes biexponential with τ1 ~ 80 ps and τ2 ~ 250 ps. These values are preserved up to room temperature. By solving coupled rate equations in a four-level model, this evolution is interpreted in terms of the reduction of density of both shallow impurities and deep traps, versus layer thickness, roughly following a L−1 law.


1995 ◽  
Vol 30 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Deng Nansheng ◽  
Tian Shizhong ◽  
Xia Mei

Abstract Tests for the photocatalytic degradation of solutions of three reactive dyes, Red M-5B, Procion Blue MX-R and Procion Black H-N, in the presence of H2O2 were carried out. When the solutions of the three reactive dyes were irradiated by UV or solar light, the colour of the solutions disappeared gradually. A statistical analysis of the test results indicated a linear relation between the concentration of dyes and the time of irradiation. The discolouration reaction of the solutions was of the first order. Rate equations for the discolouration reactions of dye solutions were developed. The dark reactions or the dye solutions containing H2O2 were very slow, illustrating that the photochemical reaction played a very important role. It was demonstrated that UV light and solar light (300 to 380 nm) photolyzes the HO and that the resulting OH radical reacts with the dye molecules and destroys the chromophore.


1993 ◽  
Vol 58 (7) ◽  
pp. 1476-1484
Author(s):  
Václav Dušek ◽  
František Skopal

For a chemical reactor with constant volume feed rate equations have been derived which describe the time dependences of concentration of the reaction components, and their approximation has been suggested. The applicability of the approximation has been verified on a model redox system Ce(IV)/V(IV) in sulfuric acid medium.


Sign in / Sign up

Export Citation Format

Share Document