scholarly journals Monte Carlo simulations of the γ–β, α–γ, and α–β phase transitions of nitrogen

1997 ◽  
Vol 106 (21) ◽  
pp. 8806-8813 ◽  
Author(s):  
A. Mulder ◽  
J. P. J. Michels ◽  
J. A. Schouten
1991 ◽  
Vol 02 (01) ◽  
pp. 201-208
Author(s):  
ROBERT H. SWENDSEN

Monte Carlo simulations of thermodynamic phase transitions are usually hampered by long relaxation times due to the phenomenon of “critical slowing down.” Using a mapping due to Fortuin and Kasteleyn, a cluster approach to Monte Carlo simulations has been developed, which greatly reduces relaxation times, improving efficiency by up to two or three orders of magnitude. New developments and extensions of this approach are also discussed.


2008 ◽  
Vol 20 (49) ◽  
pp. 494215 ◽  
Author(s):  
K Binder ◽  
W Paul ◽  
T Strauch ◽  
F Rampf ◽  
V Ivanov ◽  
...  

2011 ◽  
Vol 172-174 ◽  
pp. 658-663 ◽  
Author(s):  
Mohamed Briki ◽  
Jérôme Creuze ◽  
Fabienne Berthier ◽  
Bernard Legrand

In order to build the phase diagram of Cu-Ag nanoalloys, we study a 405-atom nanoparticle by means of Monte Carlo simulations with relaxations usingN-body interatomic potentials. We focus on a range of nominal concentrations for which the cluster core remains Cu-pure and the (001) facets of the outer shell exhibit two original phenomena. Within the (N,mAg-mCu,P,T) ensemble, a structural and chemical bistability is observed, which affects all the (001) facets together. For a nanoparticle assembly, this will result in a bimodal distribution of clusters, some of them having their (001) facets Cu-rich with the usual square shape, the other ones having their (001) facets Ag-rich with a diamond shape. This bistability is replaced in the (NAg,NCu,P,T) ensemble by a continuous evolution of both the structure and the concentration of the (001) facets from Cu-rich square-shaped to Ag-rich diamond-shaped facets as the number of Ag atoms increases. For a nanoparticle assembly, this will result in an unimodal distribution of the cluster population concerning the properties of the (001) facets. This comparison between pseudo grand canonical and isothermal-isobaric results shows that the distribution of a population of bimetallic nanoparticles depends strongly on the conditions under it is elaborated.


Sign in / Sign up

Export Citation Format

Share Document