scholarly journals Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

2016 ◽  
Vol 116 (24) ◽  
Author(s):  
A. Aab ◽  
P. Abreu ◽  
M. Aglietta ◽  
E. J. Ahn ◽  
I. Al Samarai ◽  
...  
2019 ◽  
Vol 216 ◽  
pp. 03008
Author(s):  
Marvin Gottowik ◽  
Christian Glaser ◽  
Tim Huege ◽  
Julian Rautenberg

The energy of extensive air showers can be determined from the energy radiated in the form of radio signals. The so-called radiation energy can be predicted with modern simulation codes using first-principle calculations without the need of free parameters. Here, we verify the consistency of radiation energy calculations by comparing a large set of Monte Carlo simulations made with the two codes CoREAS and ZHAireS. For the frequency band of 30 — 80 MHz, typically used by many current radio detectors, we observe a difference in the radiation energy prediction of 5.2%. This corresponds to a radio emission modelling uncertainty of 2.6% for thedetermination of the absolute cosmic-ray energy scale. Hence, radio detection offers the opportunity for a precise, accurate and independent measurement of the absolute energy of cosmic rays.


2018 ◽  
Vol 33 (26) ◽  
pp. 1850153 ◽  
Author(s):  
L. B. Arbeletche ◽  
V. P. Gonçalves ◽  
M. A. Müller

The understanding of the basic properties of the ultrahigh-energy extensive air showers is dependent on the description of hadronic interactions in an energy range beyond that probed by the LHC. One of the uncertainties present in the modeling of air showers is the treatment of diffractive interactions, which are dominated by nonperturbative physics and usually described by phenomenological models. These interactions are expected to affect the development of the air showers, since they provide a way of transporting substantial amounts of energy deep in the atmosphere, modifying the global characteristics of the shower profile. In this paper, we investigate the impact of diffractive interactions in the observables that can be measured in hadronic collisions at high energies and ultrahigh-energy cosmic ray interactions. We consider three distinct phenomenological models for the treatment of diffractive physics and estimate the influence of these interactions on the elasticity, number of secondaries, longitudinal air shower profiles and muon densities for proton-air and iron-air collisions at different primary energies. Our results demonstrate that even for the most recent models, diffractive events have a non-negligible effect on the observables and that the distinct approaches for these interactions, present in the phenomenological models, still are an important source of theoretical uncertainty for the description of the extensive air showers.


2019 ◽  
Vol 34 (12) ◽  
pp. 1950069
Author(s):  
M. A. Müller ◽  
V. P. Gonçalves

Charm and bottom particles are rare in Extensive Air Showers, but their effects can be radical on the EASs development. If such particles show up with a large fraction of primary energy, they can reach large atmospheric depths, depositing energy in deeper layers of the atmosphere. That will cause changes at the EAS observables ([Formula: see text], RMS and [Formula: see text]), besides a considerable change in the shape of longitudinal profile energy deposit in the atmosphere. We are using for this work a modified code of an EAS simulator, CORSIKA, with production of charm and bottom particles at the first interaction of the primary cosmic ray. We will show in this paper some results to different [Formula: see text] values and different production models.


Author(s):  
Alexander Shepetov ◽  
Alexander Chubenko ◽  
Bachtiyar Iskhakov ◽  
Olga Kryakunova ◽  
Orazaly Kalikulov ◽  
...  

2019 ◽  
Vol 197 ◽  
pp. 02001
Author(s):  
Bianca Keilhauer

The Pierre Auger Observatory for detecting ultrahigh energy cosmic rays has been founded in 1999. After a main planning and construction phase of about five years, the regular data taking started in 2004, but it took another four years until the full surface detector array was deployed. In parallel to the main detectors of the Observatory, a comprehensive set of instruments for monitoring the atmospheric conditions above the array was developed and installed as varying atmospheric conditions influence the development and detection of extensive air showers. The multitude of atmospheric monitoring installations at the Pierre Auger Observatory will be presented as well as the challenges and efforts to run such instruments for several decades.


2020 ◽  
Vol 15 (12) ◽  
pp. C12002-C12002
Author(s):  
B.A. Iskakov ◽  
A.Kh. Argynova ◽  
A.D. Beisenova ◽  
B.O. Zhautykov ◽  
T.K. Idrisova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document