Distribution of arrival times in cosmic ray showers

1978 ◽  
Vol 10 (4) ◽  
pp. 730-735
Author(s):  
H. S. Green

The theoretical analyses of the extensive air showers developing from the cosmic radiation has its origins in the work of Carlson and Oppenheimer (1937) and Bhabha and Heitler (1937), at a time when it was thought that such showers were initiated by electrons. The realization that protons and other nuclei were the primary particles led to a reformulation of the theory by Heitler and Janossy (1949), Messel and Green (1952) and others, in which the production of energetic pions and the three-dimensional development of air showers were accounted for. But as the soft (electromagnetic) component of the cosmic radiation is the most prominent feature of air showers at sea level, there has been a sustained interest in the theory of this component. Most of the more recent work, such as that by Butcher and Messel (1960) and Thielheim and Zöllner (1972) has relied on computer simulation; but this method has disadvantages in terms of accuracy and presentation of results, especially where a simultaneous analysis of the development of air showers in terms of several physical variables is required. This is so for instance when the time of arrival is one of the variables. Moyal (1956) played an important part in the analytical formulation of a stochastic theory of cosmic ray showers, with time as an explicit variable, and it is essentially this approach which will be adopted in the following. The actual distribution of arrival times is cosmic ray showers, for which results are obtained, is of current experimental interest (McDonald, Clay and Prescott (1977)).

1978 ◽  
Vol 10 (04) ◽  
pp. 730-735
Author(s):  
H. S. Green

The theoretical analyses of the extensive air showers developing from the cosmic radiation has its origins in the work of Carlson and Oppenheimer (1937) and Bhabha and Heitler (1937), at a time when it was thought that such showers were initiated by electrons. The realization that protons and other nuclei were the primary particles led to a reformulation of the theory by Heitler and Janossy (1949), Messel and Green (1952) and others, in which the production of energetic pions and the three-dimensional development of air showers were accounted for. But as the soft (electromagnetic) component of the cosmic radiation is the most prominent feature of air showers at sea level, there has been a sustained interest in the theory of this component. Most of the more recent work, such as that by Butcher and Messel (1960) and Thielheim and Zöllner (1972) has relied on computer simulation; but this method has disadvantages in terms of accuracy and presentation of results, especially where a simultaneous analysis of the development of air showers in terms of several physical variables is required. This is so for instance when the time of arrival is one of the variables. Moyal (1956) played an important part in the analytical formulation of a stochastic theory of cosmic ray showers, with time as an explicit variable, and it is essentially this approach which will be adopted in the following. The actual distribution of arrival times is cosmic ray showers, for which results are obtained, is of current experimental interest (McDonald, Clay and Prescott (1977)).


2018 ◽  
Vol 182 ◽  
pp. 02072 ◽  
Author(s):  
A. Leisos ◽  
T. Avgitas ◽  
G. Bourlis ◽  
G.K. Fanourakis ◽  
I. Gkialas ◽  
...  

The Hellenic Open University Cosmic Ray Telescope consists of three autonomous stations installed at the University Campus in the city of Patras. Each station comprises three large (≈ 1 m2) plastic scintillators and one or more Codalema type RF antennas detecting Extensive Air Showers (EAS), originating from primary particles with energy greater than 10 TeV. The operation and the performance of the Telescope is presented briefly, emphasising the educational activities foreseen in the framework of the HEllenic LYceum Cosmic Observatories Network (HELYCON).


2015 ◽  
Vol 754-755 ◽  
pp. 859-864
Author(s):  
A.A. Al-Rubaiee ◽  
Uda Hashim ◽  
Mohd Khairuddin Md Arshad ◽  
A. Rahim Ruslinda ◽  
R.M. Ayub ◽  
...  

One of the characteristics of longitudinal development of extensive air showers is the number of charged particles and depth of shower maximum in extensive air showers as a function of primary energy, which is often used to reconstruct the elemental composition of primary cosmic rays. Studying of extensive air shower characteristics was performed by investigating the longitudinal development parameters depending on Heitler model for different primary particles. The simulation of the number of charged particles and depth of shower maximum (NandXmax) in extensive air showers of particle cascades was performed using AIRES code for SIBYLL hadronic model for different primary particles like electron, positron, gamma quanta and iron nuclei at the energy range 1014-1019eV. The comparison between the simulated longitudinal development ofNandXmaxusing SIBYLL hadronic model with two hadronic models (QGSJET99 ans SIBYLL16) has shown an opportunity for determination of cosmic ray cascade interactions in extensive air showers.


Author(s):  
Marwah M. Abdulsttar ◽  
A.A. Al-Rubaiee ◽  
Abdul Halim K. Ali

Cherenkov light lateral distribution function (CLLDF) in Extensive Air Showers (EAS) for different primary particles (e-, n , p, F, K and Fe) was simulated using CORSIKA code for conditions and configurations of Yakutsk EAS array with the fixed primary energy 3 PeV around the knee region at different zenith angles. Basing on the results of CLLDF numerical simulation, sets of approximated functions are reconstructed for different primary particles as a function of the zenith angle. A comparison of the parametrized CLLDF with that simulated with Yakutsk EAS array is verified.The parameterized CLLDF also is compared with that measured on the Yakutsk EAS array.


1997 ◽  
Vol 39 (4) ◽  
pp. 465-468 ◽  
Author(s):  
W Unno ◽  
S Ohara ◽  
K Urata ◽  
I Masaki ◽  
T Kitamura ◽  
...  

Computer simulations have been made of large extensive air showers initiated by nuclei heavier than protons. The work forms part of a study of future experiments designed to identify the nature of the energetic primary particles. A model based upon data from nuclear emulsion experiments has been used to represent the break-up of the primary nuclei in collision with air nuclei. Differences in shower characteristics are predicted which are dependent upon the choice of model for the fragmentation of the primary nucleus and its energy. The major cause of fluctuations in the longitudinal development of showers produced by heavy particles is shown to be the pattern of the fragmentation of the incident nucleus. In the absence of a precise knowledge of the high-energy interaction, we have not identified any parameter in large showers which, if measurable and averaged over many showers, will reflect strongly the nature of the primary particle.


2015 ◽  
pp. 79-85
Author(s):  
A. Al-Rubaiee ◽  
U. Hashim ◽  
M. Marwah ◽  
Y. Al-Douri

The Cherenkov light lateral distribution function (LDF) was simulated with the CORSIKAcode in the energy range (1013 - 1016) eV. This simulation was performed for conditions and configurations of the Tunka EAS Cherenkov array for the two primary particles (p and Fe). Basing on the simulated results, many approximated functions are structured for two primary particles and different zenith angles. This allowed us to reconstruct the EAS events, which is, to determine the type and energy of the primary particles that produced showers from signal amplitudes of Cherenkov radiation measured by the Tunka Cherenkov array experiment. Comparison of the calculated LDF of Cherenkov radiation with that measured at the Tunka EAS array shows the ability to identify the primary particle that initiated the EAS cascades by determining its primary energy around the knee region of the cosmic ray spectrum.


Author(s):  
Piotr Homola ◽  
Dmitriy Beznosko ◽  
Gopal Bhatta ◽  
Łukasz Bibrzycki ◽  
Łukasz Bratek ◽  
...  

The Cosmic Ray Extremely Distributed Observatory (CREDO) is a newly formed, global collaboration dedicated to observing and studying cosmic rays (CR) and cosmic ray ensembles (CRE): groups of a minimum of two CR with a common primary interaction vertex or the same parent particle. The CREDO program embraces testing known CR and CRE scenarios, and preparing to observe unexpected physics, it is also suitable for multi-messenger and multi-mission applications. Perfectly matched to CREDO capabilities, CRE could be formed both within classical models (e.g. as products of photon-photon interactions), and exotic scenarios (e.g. as results of decay of Super Heavy Dark Matter particles), their fronts might be significantly extended in space and time, and they might include cosmic rays of energies spanning the whole cosmic ray energy spectrum. CRE are expected to be partially observable on Earth even if the initiating interaction or process occurs as far as ~1 Gpc away. They would have a footprint composed of at least two extensive air showers with correlated arrival directions and arrival times. Since CRE are mostly expected to be spread over large areas and, because of the expected wide energy range of the contributing particles, CRE detection might only be feasible when using available cosmic ray infrastructure collectively, i.e. as a globally extended network of detectors. Thus, with this review article, the CREDO Collaboration invites the astroparticle physics community to actively join or to contribute to the research dedicated to CRE, and in particular to share any cosmic ray data useful for the specific CRE detection strategies.


2019 ◽  
Vol 208 ◽  
pp. 02004
Author(s):  
Sergey Shaulov

A detailed study of the cores of extensive air showers (EAS) at mountain level (Tien-Shan 690 g/cm2) was carried out in the hybrid experiment HADRON. An analysis of the fine structure of the EAS spectrum in the energy region1015 - 1017 (knee) showed that there are two breaks in the spectrum. Along with the previously known break at an energy of 3 · 1015 eV, a change in the slope of the EAS spectrum is observed at an energy slightly below 1017 eV. In addition the use of a large X-ray emulsion chamber (XREC) as a detector of EAS cores allowed us to obtain several new results. An abnormal scaling violation in hadron spectra for Ne ~ 107 (E0 ~ 1016 eV) means the existence of a penetrating component of non-nuclear origin. The conclusion about the non-nuclear origin of the penetrating component in the primary radiation of CR is confirmed by the data about the excess of muons in the EAS containing hadrons of maximum energies. It is assumed that the mass composition of primary cosmic radiation varies sharply at energies of 1015 - 1016 eV, where quasi-nuclei (strangelets) appear instead of nuclei. A new model of the mass composition of cosmic rays in the region of ultrahigh energies is proposed on this basis .


Sign in / Sign up

Export Citation Format

Share Document