Improving organic solar cell efficiency by increasing light absorption and charge carrier mobility in the device active layer

2013 ◽  
Author(s):  
S. Sundar Kumar Iyer
2017 ◽  
Vol 09 (02) ◽  
pp. 01-04 ◽  
Author(s):  
Narender Singh ◽  
Ashish Chaudhary ◽  
Sandeep Saxena ◽  
Manish Saxena ◽  
Nikhil Rastogi

2013 ◽  
Vol 113 ◽  
pp. 100-105 ◽  
Author(s):  
Doğukan Hazar Apaydın ◽  
Dilber Esra Yıldız ◽  
Ali Cirpan ◽  
Levent Toppare

2015 ◽  
Vol 16 ◽  
pp. 205-211 ◽  
Author(s):  
Bronson Philippa ◽  
Chellappan Vijila ◽  
Ronald D. White ◽  
Prashant Sonar ◽  
Paul L. Burn ◽  
...  

2011 ◽  
Vol 209 (2) ◽  
pp. 369-372 ◽  
Author(s):  
Fu-Ching Tang ◽  
Jay Chang ◽  
Wei-Yang Chou ◽  
Horng-Long Cheng ◽  
Steve Lien-Chung Hsu ◽  
...  

Author(s):  
Zahra Samavati ◽  
Alireza Samavati ◽  
Ahmad Fauzi Ismail ◽  
Tohid N. Borhani ◽  
Mohammad Velashjerdi ◽  
...  

2013 ◽  
Vol 1500 ◽  
Author(s):  
Rebecca Isseroff ◽  
Andrew Chen ◽  
Sneha Chittabathini ◽  
Alexandra Tse ◽  
Cheng Pan ◽  
...  

ABSTRACTRelatively low efficiency is one of the main obstacles to overcome in the engineering of organic bulk heterojunction (BHJ) solar cells. Reduced graphene oxide (RGO), which has high conductivity, has been proposed to enhance the function of PCBM in the interfacial dissociation of excitons, but incorporating it into the hydrophobic photoactive polymers has proved challenging. Here we describe a novel technique for incorporating Au nanoparticles (AuNp) into the structure of the RGO. The AuNps then interact with the sulfur groups on the photoactive polymer component, while the RGO interacts via π – π stacking with the chemically similar PCBM, thereby anchoring the complex to the polymer interface. Graphene oxide was synthesized and then reduced in the presence of a gold salt. The resulting gold-functionalized RGO (AuRGO) sheets were characterized using TGA, FTIR, and TEM. The AuRGO was not soluble in chlorobenzene; however, in the presence of P3HT, the AuRGO dissolved, suggesting a reaction between the gold and the sulfur of the P3HT via a metal-thiolate bond. At 2 mg/ml, AuRGO increased the solar cell efficiency approximately 50% over the control, but higher concentrations produced large, columnar structures which blocked the electrode from having a uniform contact with the active layer.


Nano Energy ◽  
2020 ◽  
Vol 68 ◽  
pp. 104327 ◽  
Author(s):  
Tanya Kumari ◽  
Sungwoo Jung ◽  
Yongjoon Cho ◽  
Hwang-Pill Kim ◽  
Jae Won Lee ◽  
...  

2016 ◽  
Vol 848 ◽  
pp. 7-10
Author(s):  
Teantong Chonsut ◽  
Sirapat Pratontep ◽  
Anusit Keawprajak ◽  
Pisist Kumnorkaew ◽  
Navaphun Kayunkid

The aim of this research is to study improvement of power conversion efficiency (PCE) of organic-inorganic hybrid bulk heterostructure solar cell prepared by rapid convective deposition as a function of concentration of zinc oxide additive. The structure of hybrid solar cell used in this research is ITO/ZnO/P3HT:PC70BM:ZnO(nanoparticles)/MoO3/Au. By adding 5 mg/ml of ZnO nanoparticles in the active layer (P3HT:PC70BM), the PCE was increased from 0.46 to 1.09%. In order to reveal the origin of improving efficiency, surface morphology and optical properties of active layers were investigated by atomic force microscopy (AFM) and UV-Visible spectroscopy, respectively. The results clearly indicate that the enhancement of solar cell efficiency results from (i) the proper phase sepharation of electron donor and acceptor in the active layer and (ii) the better absorption of the active layer. This research work introduces an alternative way to improve solar cell efficiency by adding ZnO into active layer.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Pelin Kavak ◽  
Elif Alturk Parlak

We have fabricated organic solar cell of a new low bandgap polymer poly[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2,6-diyl-alt-4,7-bis(2-thienyl)-2,1,3-benzothiadiazole-5′,5′′-diyl] (PCPDTTBTT). We have investigated for the first time the stability tests, ISOS-L-1 and ISOS-D-3, of PCPDTTBTT solar cells. Thermal annealing of PCPDTTBTT solar cells at 80°C brought about an improvement of photocurrent generation, stability, and efficiency of the solar cells. T80 value of PCPDTTBTT solar cell is about 150 hours which is close to P3HT (235 h). PCPDTTBTT is very promising polymer for both polymer solar cell efficiency and stability.


RSC Advances ◽  
2020 ◽  
Vol 10 (52) ◽  
pp. 31547-31552
Author(s):  
Yuxin Guo ◽  
Kaito Yoshioka ◽  
Shino Hamao ◽  
Yoshihiro Kubozono ◽  
Fumito Tani ◽  
...  

Picenediimide derivatives serve as the active layer of n-channel thin-film field-effect transistors displaying a maximum charge carrier mobility as high as 2.0 × 10−1 cm2 V−1 s−1.


Sign in / Sign up

Export Citation Format

Share Document