Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy

2013 ◽  
Vol 113 (23) ◽  
pp. 234310 ◽  
Author(s):  
Jia Ge ◽  
Zhi Peng Ling ◽  
Johnson Wong ◽  
Rolf Stangl ◽  
Armin G. Aberle ◽  
...  
1983 ◽  
Vol 30 ◽  
Author(s):  
F. J. Kampas

ABSTRACTOptical emission intensities have been measured as a function of composition for silane-argon and silane-hydrogen mixtures used in the deposition of hydrogenated amorphous silicon. It was found that changes in silane fraction have a large effect on the electron concentration and energy distribution in the discharge.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
F. X. Abomo Abega ◽  
A. Teyou Ngoupo ◽  
J. M. B. Ndjaka

Numerical modelling is used to confirm experimental and theoretical work. The aim of this work is to present how to simulate ultrathin hydrogenated amorphous silicon- (a-Si:H-) based solar cells with a ITO BRL in their architectures. The results obtained in this study come from SCAPS-1D software. In the first step, the comparison between the J-V characteristics of simulation and experiment of the ultrathin a-Si:H-based solar cell is in agreement. Secondly, to explore the impact of certain properties of the solar cell, investigations focus on the study of the influence of the intrinsic layer and the buffer layer/absorber interface on the electrical parameters ( J SC , V OC , FF, and η ). The increase of the intrinsic layer thickness improves performance, while the bulk defect density of the intrinsic layer and the surface defect density of the buffer layer/ i -(a-Si:H) interface, respectively, in the ranges [109 cm-3, 1015 cm-3] and [1010 cm-2, 5 × 10 13  cm-2], do not affect the performance of the ultrathin a-Si:H-based solar cell. Analysis also shows that with approximately 1 μm thickness of the intrinsic layer, the optimum conversion efficiency is 12.71% ( J SC = 18.95   mA · c m − 2 , V OC = 0.973   V , and FF = 68.95 % ). This work presents a contribution to improving the performance of a-Si-based solar cells.


2012 ◽  
Vol 1439 ◽  
pp. 145-150
Author(s):  
Yasuyoshi Kurokawa ◽  
Shinya Kato ◽  
Yuya Watanabe ◽  
Akira Yamada ◽  
Makoto Konagai ◽  
...  

ABSTRACTThe electrical characteristics of silicon nanowire (SiNW) solar cells with p-type hydrogenated amorphous silicon oxide (Eg=1.9 eV)/n-type SiNWs embedded in SiO2/n-type hydrogenated amorphous silicon (Eg=1.7 eV) structure have been investigated using a two-dimensional device simulator with taking the quantum size effects into account. The average bandgap of a SiNW embedded in SiO2 increased from 1.15 eV to 2.71 eV with decreasing the diameter from 10 nm to 1 nm due to the quantum size effect. It should be noted that under the sunlight with AM1.5G the open-circuit voltage (Voc) of SiNW solar cells also increased to 1.54 V with decreasing the diameter of the SiNWs to 1 nm. This result suggests that it is possible to enhance the Voc by the quantum size effect and a SiNW is a promising material for the all silicon tandem solar cells.


Sign in / Sign up

Export Citation Format

Share Document