Effects of easy axis direction on the magnetoimpedance properties of thin films with uniaxial anisotropy

2014 ◽  
Vol 115 (17) ◽  
pp. 17A303 ◽  
Author(s):  
H. Kikuchi ◽  
Y. Takahashi ◽  
K. Takahashi ◽  
T. Nakai ◽  
S. Hashi ◽  
...  



1979 ◽  
Vol 40 (C2) ◽  
pp. C2-193-C2-195 ◽  
Author(s):  
S. Japa ◽  
K. Krop ◽  
R. Radwanski ◽  
J. Wolinski
Keyword(s):  


2002 ◽  
Vol 7 (2) ◽  
pp. 45-52
Author(s):  
L. Jakučionis ◽  
V. Kleiza

Electrical properties of conductive thin films, that are produced by vacuum evaporation on the dielectric substrates, and which properties depend on their thickness, usually are anisotropic i.e. they have uniaxial anisotropy. If the condensate grow on dielectric substrates on which plane electrical field E is created the transverse voltage U⊥ appears on the boundary of the film in the direction perpendicular to E. Transverse voltage U⊥ depends on the angle γ between the applied magnetic field H and axis of light magnetisation. When electric field E is applied to continuous or grid layers, U⊥ and resistance R of layers are changed by changing γ. It means that value of U⊥ is the measure of anisotropy magnitude. Increasing voltage U0 , which is created by E, U⊥ increases to certain magnitude and later decreases. The anisotropy of continuous thin layers is excited by inequality of conductivity tensor components σ0 ≠ σ⊥. The reason of anisotropy is explained by the model which shows that properties of grain boundaries are defined by unequal probability of transient of charge carrier.



1994 ◽  
Vol 76 (10) ◽  
pp. 6986-6988 ◽  
Author(s):  
T. Yeh ◽  
L. Berg ◽  
B. Witcraft ◽  
J. Falenschek ◽  
J. Yue


1968 ◽  
Vol 4 (3) ◽  
pp. 515-519 ◽  
Author(s):  
T. Fujii ◽  
S. Uchiyama ◽  
M. Masuda ◽  
Y. Sakaki


1999 ◽  
Vol 06 (05) ◽  
pp. 753-761 ◽  
Author(s):  
P. LE FÈVRE ◽  
H. MAGNAN ◽  
A. MIDOIR ◽  
D. CHANDESRIS ◽  
H. JAFFRÈS ◽  
...  

The bidimensionnal character of thin magnetic films deposited on single-crystal substrates, together with the occurrence of singular crystallographic structures, often confer on these systems electronic properties that cannot be found in bulk solids. For example, thin Ni layers deposited on Cu(001) present a perpendicular magnetic anisotropy in a very wide thickness range. We will show that this can be explained by a distorted structure of Ni, originating from the strain induced by the epitaxy on the Cu substrate. In this field of 2D magnetism, nanostructures are now investigated. Thin Fe layers on MgO(001) were cut into stripes by the "atomic saw" method: a compression of the substrate induces a dislocation slipping which saws both the substrate and the Fe film in regular and separated ribbons. The observed perpendicular to the stripes magnetization easy axis will be explained by a structural relaxation occurring during the structuration process. In these two studies, a precise structural characterization and simple magnetoelastic models allow one to describe the magnetic behaviors of these systems.



Author(s):  
N. A. Ilyin ◽  
A. A. Klimov ◽  
N. Tiercelin ◽  
P. Pernod ◽  
E. D. Mishina ◽  
...  

The need to study ultrafast processes in magnetism is due to the prospects for creating ultrafast magnetic recording and ultrafast spintronic devices. In order to excite the magnetic subsystem femtosecond optical pulses are used. The excitement is manifested as in spin precession. In metals, the material is heated first due to significant optical absorption, and significant Joule losses occur. The most important task is to search for materials in which spin processes are excited without heating. Obvious candidates are weakly absorbing materials, such as ferrite garnets. However, the range of such materials and the range of their functionality are limited.The purpose of this work is to study the dynamics of systems with nonthermal mechanisms of spin precession excitation. Such excitation is possible in ferromagnetic / antiferromagnetic heterostructures with exchange interaction, provided that the recombination time of photocarriers is shorter than the time of heat diffusion. Multilayer TbCo / FeCo structures of the near IR range were investigated for a femtosecond optical pulse. The spin dynamics are compared with the direction of the wave vector of the exciting pulse along and perpendicular to the axis of easy magnetization of the structures (“easy axis” and “hard axis” geometry, respectively). It is shown that in case of “easy axis” geometry the determinative mechanism is the thermal interaction. When the system is exposed to an excitation pulse, this mechanism leads to a decrease in the projection of magnetization on the direction of propagation of the test beam. In case of “hard axis” geometry, the magnetization turns to the magnetic field at the initial stage. Then it precesses and relaxes to an equilibrium angular orientation. Such dynamics indicate a rapid recovery of the uniaxial anisotropy field after laser irradiation. The presented results demonstrate an ultrafast change in the magnetic anisotropy induced during the fabrication of the heterostructure under study, which may be of interest for optical control of the orientation of the magnetization.



2000 ◽  
Vol 614 ◽  
Author(s):  
N. X. Sun ◽  
S. X. Wang ◽  
Chin-Ya Hung ◽  
Chester X. Chien ◽  
Hua-Ching Tong

ABSTRACTHigh saturation magnetization soft magnetic materials are required for future high-density recording heads as well as high frequency inductors. In this work, (Fe0.7Co0.3)1−xNx (or in short FeCoN) alloy films were synthesized with a high saturation magnetization of 24.5 kG, a hard axis coercivity of 5 Oe, an easy axis coercivity of 18 Oe, and a resistivity of 55 μΩcm. The FeCoN film sandwiched between two permalloy layers (5 nm) shows very good magnetic softness, a low hard axis coercivity of 0.6 Oe, an easy axis coercivity of 7.8 Oe, an excellent in-plane uniaxial anisotropy with an anisotropy of about 20 Oe, an initial permeability of 1000, and a roll-off frequency of 1.5 GHz. In order to understand the effect of the permalloy layers on the FeCoN layer, we fabricated four film structures: single layer FeCoN film; FeCoN film sandwiched between two permalloy layers on both sides; FeCoN film with one permalloy layer as the underlayer; and FeCoN film with one permalloy layer as caplayer. All these film structures were both magnetically and structurally characterized and compared. Structural characterization shows that there is no significant difference in the grain size of the FeCoN single layer and the FeCoN layer sandwiched between two permalloy layers. The four film structures have almost the same amount of compressive stress, about −300 MPa; and their saturation magnetostriction constants are also very close, in the range of 39.6×10−6 to 44.3×10−6. Difference in the crystallographic textures was observed in the pole figures for the FeCoN single layer and FeCoN film with permalloy underlayer.



1987 ◽  
Vol 61 (8) ◽  
pp. 3658-3660 ◽  
Author(s):  
G. Suran ◽  
K. Ounadjela ◽  
F. Machizaud


Sign in / Sign up

Export Citation Format

Share Document