scholarly journals Study of flow behaviors on single-cell manipulation and shear stress reduction in microfluidic chips using computational fluid dynamics simulations

2014 ◽  
Vol 8 (1) ◽  
pp. 014109 ◽  
Author(s):  
Feng Shen ◽  
XiuJun Li ◽  
Paul C. H. Li
Author(s):  
Khalid M Saqr

Cerebral aneurysm is a fatal neurovascular disorder. Computational fluid dynamics simulation of aneurysm haemodynamics is one of the most important research tools which provide increasing potential for clinical applications. However, computational fluid dynamics modelling of such delicate neurovascular disorder involves physical complexities that cannot be easily simplified. Recently, it was shown that the Newtonian simplification used to close the shear stress tensor of the Navier–Stokes equation is not sufficient to explore aneurysm haemodynamics. This article explores the differences between the latter simplification, non-Newtonian power-law model and a newly proposed quasi-mechanistic model. The modified Krieger model, which treats blood as a suspension of plasma and particles, was implemented in computational fluid dynamics context here for the first time and is made available to the readers in a C# code in the supplementary material of this article. Two middle-cerebral artery and two anterior-communicating artery aneurysms, all ruptured, were utilized here as case studies. It was shown that the modified Krieger model had higher sensitivity for wall shear stress calculations in comparison with the other two models. The modified Krieger model yielded lower wall shear stress values consistently in comparison with the other two models. Moreover, the modified Krieger model has generally predicted higher pressure in the aneurysm models. Based on published aneurysm rupture studies, it is believed that ruptured aneurysms are usually correlated with lower wall shear stress values than unruptured ones. Therefore, this work concludes that the modified Krieger model is a potential candidate for providing better clinical relevance to aneurysm computational fluid dynamics simulations.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
T. van Druenen ◽  
B. Blocken

AbstractSome teams aiming for victory in a mountain stage in cycling take control in the uphill sections of the stage. While drafting, the team imposes a high speed at the front of the peloton defending their team leader from opponent’s attacks. Drafting is a well-known strategy on flat or descending sections and has been studied before in this context. However, there are no systematic and extensive studies in the scientific literature on the aerodynamic effect of uphill drafting. Some studies even suggested that for gradients above 7.2% the speeds drop to 17 km/h and the air resistance can be neglected. In this paper, uphill drafting is analyzed and quantified by means of drag reductions and power reductions obtained by computational fluid dynamics simulations validated with wind tunnel measurements. It is shown that even for gradients above 7.2%, drafting can yield substantial benefits. Drafting allows cyclists to save over 7% of power on a slope of 7.5% at a speed of 6 m/s. At a speed of 8 m/s, this reduction can exceed 16%. Sensitivity analyses indicate that significant power savings can be achieved, also with varying bicycle, cyclist, road and environmental characteristics.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2041
Author(s):  
Eva C. Silva ◽  
Álvaro M. Sampaio ◽  
António J. Pontes

This study shows the performance of heat sinks (HS) with different designs under forced convection, varying geometric and boundary parameters, via computational fluid dynamics simulations. Initially, a complete and detailed analysis of the thermal performance of various conventional HS designs was taken. Afterwards, HS designs were modified following some additive manufacturing approaches. The HS performance was compared by measuring their temperatures and pressure drop after 15 s. Smaller diameters/thicknesses and larger fins/pins spacing provided better results. For fins HS, the use of radial fins, with an inverted trapezoidal shape and with larger holes was advantageous. Regarding pins HS, the best option contemplated circular pins in combination with frontal holes in their structure. Additionally, lattice HS, only possible to be produced by additive manufacturing, was also studied. Lower temperatures were obtained with a hexagon unit cell. Lastly, a comparison between the best HS in each category showed a lower thermal resistance for lattice HS. Despite the increase of at least 38% in pressure drop, a consequence of its frontal area, the temperature was 26% and 56% lower when compared to conventional pins and fins HS, respectively, and 9% and 28% lower when compared to the best pins and best fins of this study.


Sign in / Sign up

Export Citation Format

Share Document