microfluidic chips
Recently Published Documents


TOTAL DOCUMENTS

935
(FIVE YEARS 274)

H-INDEX

57
(FIVE YEARS 9)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 170
Author(s):  
Linh Ho ◽  
Nazir Hossen ◽  
Trieu Nguyen ◽  
Au Vo ◽  
Fakhrul Ahsan

Pulmonary arterial hypertension (PAH) is a disease that progress over time and is defined as an increase in pulmonary arterial pressure and pulmonary vascular resistance that frequently leads to right-ventricular (RV) failure and death. Epigenetic modifications comprising DNA methylation, histone remodeling, and noncoding RNAs (ncRNAs) have been established to govern chromatin structure and transcriptional responses in various cell types during disease development. However, dysregulation of these epigenetic mechanisms has not yet been explored in detail in the pathology of pulmonary arterial hypertension and its progression with vascular remodeling and right-heart failure (RHF). Targeting epigenetic regulators including histone methylation, acetylation, or miRNAs offers many possible candidates for drug discovery and will no doubt be a tempting area to explore for PAH therapies. This review focuses on studies in epigenetic mechanisms including the writers, the readers, and the erasers of epigenetic marks and targeting epigenetic regulators or modifiers for treatment of PAH and its complications described as RHF. Data analyses from experimental cell models and animal induced PAH models have demonstrated that significant changes in the expression levels of multiple epigenetics modifiers such as HDMs, HDACs, sirtuins (Sirt1 and Sirt3), and BRD4 correlate strongly with proliferation, apoptosis, inflammation, and fibrosis linked to the pathological vascular remodeling during PAH development. The reversible characteristics of protein methylation and acetylation can be applied for exploring small-molecule modulators such as valproic acid (HDAC inhibitor) or resveratrol (Sirt1 activator) in different preclinical models for treatment of diseases including PAH and RHF. This review also presents to the readers the application of microfluidic devices to study sex differences in PAH pathophysiology, as well as for epigenetic analysis.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Sofani Tafesse Gebreyesus ◽  
Asad Ali Siyal ◽  
Reta Birhanu Kitata ◽  
Eric Sheng-Wen Chen ◽  
Bayarmaa Enkhbayar ◽  
...  

AbstractSingle-cell proteomics can reveal cellular phenotypic heterogeneity and cell-specific functional networks underlying biological processes. Here, we present a streamlined workflow combining microfluidic chips for all-in-one proteomic sample preparation and data-independent acquisition (DIA) mass spectrometry (MS) for proteomic analysis down to the single-cell level. The proteomics chips enable multiplexed and automated cell isolation/counting/imaging and sample processing in a single device. Combining chip-based sample handling with DIA-MS using project-specific mass spectral libraries, we profile on average ~1,500 protein groups across 20 single mammalian cells. Applying the chip-DIA workflow to profile the proteomes of adherent and non-adherent malignant cells, we cover a dynamic range of 5 orders of magnitude with good reproducibility and <16% missing values between runs. Taken together, the chip-DIA workflow offers all-in-one cell characterization, analytical sensitivity and robustness, and the option to add additional functionalities in the future, thus providing a basis for advanced single-cell proteomics applications.


Author(s):  
Jiaci Chen ◽  
Peilong Li ◽  
Taiyi Zhang ◽  
Zhipeng Xu ◽  
Xiaowen Huang ◽  
...  

Exosomes, a nano-sized subtype of extracellular vesicles secreted from almost all living cells, are capable of transferring cell-specific constituents of the source cell to the recipient cell. Cumulative evidence has revealed exosomes play an irreplaceable role in prognostic, diagnostic, and even therapeutic aspects. A method that can efficiently provide intact and pure exosomes samples is the first step to both exosome-based liquid biopsies and therapeutics. Unfortunately, common exosomal separation techniques suffer from operation complexity, time consumption, large sample volumes and low purity, posing significant challenges for exosomal downstream analysis. Efficient, simple, and affordable methods to isolate exosomes are crucial to carrying out relevant researches. In the last decade, emerging technologies, especially microfluidic chips, have proposed superior strategies for exosome isolation and exhibited fascinating performances. While many excellent reviews have overviewed various methods, a compressive review including updated/improved methods for exosomal isolation is indispensable. Herein, we first overview exosomal properties, biogenesis, contents, and functions. Then, we briefly outline the conventional technologies and discuss the challenges of clinical applications of these technologies. Finally, we review emerging exosomal isolation strategies and large-scale GMP production of engineered exosomes to open up future perspectives of next-generation Exo-devices for cancer diagnosis and treatment.


2022 ◽  
pp. 3-35
Author(s):  
Hui Chen ◽  
Bin Yang ◽  
Zhejun Yang
Keyword(s):  

Author(s):  
Bart Leemans ◽  
Elizabeth G Bromfield ◽  
Tom A E Stout ◽  
Mabel Vos ◽  
Hanna Van Der Ham ◽  
...  

Abstract We describe the development of two methods for obtaining confluent monolayers of polarized, differentiated equine oviduct epithelial cells (EOEC) in Transwell inserts and microfluidic chips. EOECs from the ampulla were isolated post-mortem and seeded either (1) directly onto a microporous membrane as differentiated EOECs (direct seeding protocol) or (2) first cultured to a confluent de-differentiated monolayer in conventional wells, then trypsinized and seeded onto a microporous membrane (re-differentiation protocol). Maintenance or induction of EOEC differentiation in these systems was achieved by air-liquid interface introduction. Monolayers cultured via both protocols were characterized by columnar, cytokeratin 19-positive EOECs in Transwell inserts. However, only the re-differentiation protocol could be transferred successfully to the microfluidic chips. Integrity of the monolayers was confirmed by transepithelial resistance measurements, tracer flux and the demonstration of an intimate network of tight junctions. Using the direct protocol, 28% of EOECs showed secondary cilia at the apical surface in a diffuse pattern. In contrast, re-differentiated polarized EOECs rarely showed secondary cilia in either culture system (&gt;90% of the monolayers showed &lt;1% ciliated EOECs). Occasionally (5–10%), re-differentiated monolayers with 11–27% EOECs with secondary cilia in a diffuse pattern were obtained. Additionally, nuclear progesterone receptor expression was found to be inhibited by simulated luteal phase hormone concentrations, and sperm binding to cilia was higher for re-differentiated EOEC monolayers exposed to estrogen-progesterone concentrations mimicking the follicular rather than luteal phase. Overall, a functional equine oviduct model was established with close morphological resemblance to in vivo oviduct epithelium.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 6
Author(s):  
Amin Javidanbardan ◽  
Ana M. Azevedo ◽  
Virginia Chu ◽  
João P. Conde

In recent years, there has been an increased interest in exploring the potential of micro-and mesoscale milling technologies for developing cost-effective microfluidic systems with high design flexibility and a rapid microfabrication process that does not require a cleanroom. Nevertheless, the number of current studies aiming to fully understand and establish the benefits of this technique in developing high-quality microsystems with simple integrability is still limited. In the first part of this study, we define a systematic and adaptable strategy for developing high-quality poly(methyl methacrylate) (PMMA)-based micromilled structures. A case study of the average surface roughness (Ra) minimization of a cuboid column is presented to better illustrate some of the developed strategies. In this example, the Ra of a cuboid column was reduced from 1.68 μm to 0.223 μm by implementing milling optimization and postprocessing steps. In the second part of this paper, new strategies for developing a 3D microsystem were introduced by using a specifically designed negative PMMA master mold for polydimethylsiloxane (PDMS) double-casting prototyping. The reported results in this study demonstrate the robustness of the proposed approach for developing microfluidic structures with high surface quality and structural integrability in a reasonable amount of time.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 526
Author(s):  
Kieu The Loan Trinh ◽  
Woo Ri Chae ◽  
Nae Yoon Lee

Poly(methyl methacrylate) (PMMA) has become an appealing material for manufacturing microfluidic chips, particularly for biomedical applications, because of its transparency and biocompatibility, making the development of an appropriate bonding strategy critical. In our research, we used acetic acid as a solvent to create a pressure-free assembly of PMMA microdevices. The acetic acid applied between the PMMA slabs was activated by microwave using a household microwave oven to tightly merge the substrates without external pressure such as clamps. The bonding performance was tested and a superior bond strength of 14.95 ± 0.77 MPa was achieved when 70% acetic acid was used. Over a long period, the assembled PMMA device with microchannels did not show any leakage. PMMA microdevices were also built as a serpentine 2D passive micromixer and cell culture platform to demonstrate their applicability. The results demonstrated that the bonding scheme allows for the easy assembly of PMMAs with a low risk of clogging and is highly biocompatible. This method provides for a simple but robust assembly of PMMA microdevices in a short time without requiring expensive instruments.


Sign in / Sign up

Export Citation Format

Share Document