Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot

2014 ◽  
Vol 105 (14) ◽  
pp. 141109 ◽  
Author(s):  
Saniya Deshpande ◽  
Thomas Frost ◽  
Arnab Hazari ◽  
Pallab Bhattacharya
2012 ◽  
Vol 100 (6) ◽  
pp. 061114 ◽  
Author(s):  
O. Fedorych ◽  
C. Kruse ◽  
A. Ruban ◽  
D. Hommel ◽  
G. Bacher ◽  
...  

2020 ◽  
Vol 6 (38) ◽  
pp. eabb1821
Author(s):  
Sergii Morozov ◽  
Evangelina L. Pensa ◽  
Ali Hossain Khan ◽  
Anatolii Polovitsyn ◽  
Emiliano Cortés ◽  
...  

Electron transfer to an individual quantum dot promotes the formation of charged excitons with enhanced recombination pathways and reduced lifetimes. Excitons with only one or two extra charges have been observed and exploited for very efficient lasing or single–quantum dot light-emitting diodes. Here, by room-temperature time-resolved experiments on individual giant-shell CdSe/CdS quantum dots, we show the electrochemical formation of highly charged excitons containing more than 12 electrons and 1 hole. We report the control over intensity blinking, along with a deterministic manipulation of quantum dot photodynamics, with an observed 210-fold increase in the decay rate, accompanied by 12-fold decrease in the emission intensity, while preserving single-photon emission characteristics. These results pave the way for deterministic control over the charge state, and room-temperature decay rate engineering for colloidal quantum dot–based classical and quantum communication technologies.


Nano Letters ◽  
2014 ◽  
Vol 14 (2) ◽  
pp. 982-986 ◽  
Author(s):  
Mark J. Holmes ◽  
Kihyun Choi ◽  
Satoshi Kako ◽  
Munetaka Arita ◽  
Yasuhiko Arakawa

APL Materials ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 061106
Author(s):  
M. J. Holmes ◽  
T. Zhu ◽  
F. C.-P. Massabuau ◽  
J. Jarman ◽  
R. A. Oliver ◽  
...  

2008 ◽  
Vol 25 (9) ◽  
pp. 3231-3233 ◽  
Author(s):  
Dou Xiu-Ming ◽  
Sun Bao-Quan ◽  
Chang Xiu-Ying ◽  
Xiong Yong-Hua ◽  
Huang She-Song ◽  
...  

2005 ◽  
Vol 03 (supp01) ◽  
pp. 223-228 ◽  
Author(s):  
WEN-CHANG HUNG ◽  
A. ADAWI ◽  
A. TAHRAOUI ◽  
A. G. CULLIS

In order to control light, different strategies have been applied by placing an optically active medium into a semiconductor resonator and certain applications such as LEDs and laser diodes have been commercialized for many years. The possibility of nanoscale optical applications has created great interesting for quantum nanostructure research. Recently, single photon emission has been an active area of quantum dot research. A quantum dot is place between distributed Bragg reflectors (DBRs) within a micro-pillar structure. In this study, we shall report on an active layer composed of an organic material instead of a semiconductor. The micro-pillar structure is fabricated by a focused ion beam (FIB) micro-machining technique. The ultimate target is to achieve a single molecule within the micro-pillar and therefore to enable single photon emission. Here, we demonstrate some results of the fabrication procedure of a 5 micron organic micro-pillar via the focused ion beam and some measurement results from this study. The JEOL 6500 dual column system equipped with both electron and ion beams enables us to observe the fabrication procedure during the milling process. Furthermore, the strategy of the FIB micro-machining method is reported as well.


Sign in / Sign up

Export Citation Format

Share Document