Gradient flow of the stochastic relaxation on a generic exponential family

2015 ◽  
Author(s):  
Luigi Malagò ◽  
Giovanni Pistone
Entropy ◽  
2015 ◽  
Vol 17 (6) ◽  
pp. 4215-4254 ◽  
Author(s):  
Luigi Malagò ◽  
Giovanni Pistone

Author(s):  
Valentina Kuskova ◽  
Stanley Wasserman

Network theoretical and analytic approaches have reached a new level of sophistication in this decade, accompanied by a rapid growth of interest in adopting these approaches in social science research generally. Of course, much social and behavioral science focuses on individuals, but there are often situations where the social environment—the social system—affects individual responses. In these circumstances, to treat individuals as isolated social atoms, a necessary assumption for the application of standard statistical analysis is simply incorrect. Network methods should be part of the theoretical and analytic arsenal available to sociologists. Our focus here will be on the exponential family of random graph distributions, p*, because of its inclusiveness. It includes conditional uniform distributions as special cases.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1568
Author(s):  
Shaul K. Bar-Lev

Let F=Fθ:θ∈Θ⊂R be a family of probability distributions indexed by a parameter θ and let X1,⋯,Xn be i.i.d. r.v.’s with L(X1)=Fθ∈F. Then, F is said to be reproducible if for all θ∈Θ and n∈N, there exists a sequence (αn)n≥1 and a mapping gn:Θ→Θ,θ⟼gn(θ) such that L(αn∑i=1nXi)=Fgn(θ)∈F. In this paper, we prove that a natural exponential family F is reproducible iff it possesses a variance function which is a power function of its mean. Such a result generalizes that of Bar-Lev and Enis (1986, The Annals of Statistics) who proved a similar but partial statement under the assumption that F is steep as and under rather restricted constraints on the forms of αn and gn(θ). We show that such restrictions are not required. In addition, we examine various aspects of reproducibility, both theoretically and practically, and discuss the relationship between reproducibility, convolution and infinite divisibility. We suggest new avenues for characterizing other classes of families of distributions with respect to their reproducibility and convolution properties .


2021 ◽  
Vol 15 ◽  
pp. 174830262110113
Author(s):  
Qianying Hong ◽  
Ming-jun Lai ◽  
Jingyue Wang

We present a convergence analysis for a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fetami model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme.


Author(s):  
Alexander Mielke

AbstractWe consider a non-negative and one-homogeneous energy functional $${{\mathcal {J}}}$$ J on a Hilbert space. The paper provides an exact relation between the solutions of the associated gradient-flow equations and the energetic solutions generated via the rate-independent system given in terms of the time-dependent functional $${{\mathcal {E}}}(t,u)= t {{\mathcal {J}}}(u)$$ E ( t , u ) = t J ( u ) and the norm as a dissipation distance. The relation between the two flows is given via a solution-dependent reparametrization of time that can be guessed from the homogeneities of energy and dissipations in the two equations. We provide several examples including the total-variation flow and show that equivalence of the two systems through a solution dependent reparametrization of the time. Making the relation mathematically rigorous includes a careful analysis of the jumps in energetic solutions which correspond to constant-speed intervals for the solutions of the gradient-flow equation. As a major result we obtain a non-trivial existence and uniqueness result for the energetic rate-independent system.


2021 ◽  
pp. 001316442199253
Author(s):  
Robert C. Foster

This article presents some equivalent forms of the common Kuder–Richardson Formula 21 and 20 estimators for nondichotomous data belonging to certain other exponential families, such as Poisson count data, exponential data, or geometric counts of trials until failure. Using the generalized framework of Foster (2020), an equation for the reliability for a subset of the natural exponential family have quadratic variance function is derived for known population parameters, and both formulas are shown to be different plug-in estimators of this quantity. The equivalent Kuder–Richardson Formulas 20 and 21 are given for six different natural exponential families, and these match earlier derivations in the case of binomial and Poisson data. Simulations show performance exceeding that of Cronbach’s alpha in terms of root mean square error when the formula matching the correct exponential family is used, and a discussion of Jensen’s inequality suggests explanations for peculiarities of the bias and standard error of the simulations across the different exponential families.


Author(s):  
Frederic Alberti

AbstractIt is well known that the classical recombination equation for two parent individuals is equivalent to the law of mass action of a strongly reversible chemical reaction network, and can thus be reformulated as a generalised gradient system. Here, this is generalised to the case of an arbitrary number of parents. Furthermore, the gradient structure of the backward-time partitioning process is investigated.


Sign in / Sign up

Export Citation Format

Share Document