A model study of wind-induced sea level fluctuations in the Persian Gulf and the Gulf of Oman

2015 ◽  
Author(s):  
Mohammad Javad Ketabdari ◽  
Amin Ilia ◽  
Mehdi Karimi
2020 ◽  
Vol 8 (4) ◽  
pp. 285
Author(s):  
Naghmeh Afshar-Kaveh ◽  
Mostafa Nazarali ◽  
Charitha Pattiaratchi

Sea-level data from six tide gauge stations along the northern coast of the Persian Gulf were analyzed both in time and frequency domain to evaluate meteorological forcing. Spectral analyses indicated that mixed, predominantly semi-diurnal tides were dominant at all stations, but low-frequency fluctuations correlated well with atmospheric pressure and wind components. Non-tidal sea-level fluctuations up to 0.75 m were observed along the northern coasts of the Gulf due to the combined action of lower atmospheric pressure and cross-shore wind. Coherency between low-frequency sea-level records and mean sea-level pressure indicated that the latter usually leads to sea-level fluctuations between 1 and 6.4 days. In contrast, the same analysis on the wind velocity and sea level revealed that the former lags between 3 and 13 days. The effect of wind stress on coastal sea-level variations was higher compared with the effect of atmospheric pressure. Concurrent analysis of low-pass-filtered sea-level records proved that the non-tidal wave moves from west to east along the northern coasts of the Persian Gulf.


Author(s):  
Christopher G. Piecuch ◽  
Ichiro Fukumori ◽  
Rui M. Ponte

AbstractSatellite observations are used to establish the dominant magnitudes, scales, and mechanisms of intraseasonal variability in ocean dynamic sea level () in the Persian Gulf over 2002–2015. Empirical orthogonal function (EOF) analysis applied to altimetry data reveals a basin-wide, single-signed intraseasonal fluctuation that contributes importantly to variance in the Persian Gulf at monthly to decadal timescales. An EOF analysis of Gravity Recovery and Climate Experiment (GRACE) observations over the same period returns a similar large-scale mode of intraseasonal variability, suggesting that the basin-wide intraseasonal variation has a predominantly barotropic nature. A linear barotropic theory is developed to interpret the data. The theory represents Persian-Gulf-average () in terms of local freshwater flux, barometric pressure, and wind stress forcing, as well as at the boundary in the Gulf of Oman. The theory is tested using a multiple linear regression with these freshwater flux, barometric pressure, wind stress, and boundary quantities as input, and as output. The regression explains 70%±79% (95% confidence interval) of the intraseasonal variance. Numerical values of regression coefficients computed empirically from the data are consistent with theoretical expectations from first principles. Results point to a substantial non-isostatic response to surface loading. The Gulf of Oman boundary condition shows lagged correlation with upstream along the Indian Subcontinent, Maritime Continent, and equatorial Indian Ocean, suggesting a large-scale Indian-Ocean influence on intraseasonal variation mediated by coastal and equatorial waves, and hinting at potential predictability. This study highlights the value of GRACE for understanding sea level in an understudied marginal sea.


2020 ◽  
Author(s):  
Christopher Piecuch ◽  
Rui Ponte ◽  
Ichiro Fukumori

<p>The Persian Gulf is a semi-enclosed marginal sea of the Indian Ocean. It connects to the Arabian Sea through the Gulf of Oman and the Strait of Hormuz. The Persian Gulf has a large coastal population, and is relevant economically and geopolitically, and so it is important to understand sea-level changes in the region. We use satellite observations from the Gravity Recovery and Climate Experiment (<strong>GRACE</strong>) and satellite altimetry to study intraseasonal sea level variation over the Persian Gulf during 2002-2015. We interrogate the spatial scales and forcing functions of the variation and its relation to large-scale circulation and climate over the Indian Ocean. Empirical orthogonal function analysis applied to sea level data from satellite altimetry reveals that the intraseasonal sea level variation in the Persian Gulf is dominated by a basin-wide, single-signed mode of fluctuation. Maximum covariance analysis applied to altimetry and GRACE satellite retrievals shows that these basin-wide intraseasonal sea level fluctuations are largely barotropic in nature and coupled to variations in ocean bottom pressure. To interpret the results, we develop a simple linear barotropic theory based on volume and momentum conservation. The theory describes Persian Gulf sea level in terms of freshwater flux over the region, wind stress along the Strait of Hormuz, and sea level in the Gulf of Oman. To test this theory, we perform a complex multiple linear regression using these regional freshwater flux, wind stress, and sea level as inputs, and Persian Gulf sea level as output. The regression model explains ~70% of the intraseasonal Persian Gulf sea level variance. The magnitudes and phases of the coefficients determined from the regression model are consistent with expectations from the simple theory. The Gulf of Oman sea level boundary condition shows significant lagged correlation with intraseasonal sea level upstream along the Indian Subcontinent, Maritime Continent, and equatorial Indian Ocean. This hints at a large-scale circulation and climate influence on intraseasonal sea level variation of the Persian Gulf mediated by waves propagating along equatorial and coastal waveguides. This study highlights the value of GRACE retrievals of ocean bottom pressure for understanding sea level in an understudied semi-enclosed marginal sea.</p>


2018 ◽  
Vol 60 (3) ◽  
pp. 340-355 ◽  
Author(s):  
Naghmeh Afshar-Kaveh ◽  
Abbas Ghaheri ◽  
Vahid Chegini ◽  
Mostafa Nazarali

Zootaxa ◽  
2018 ◽  
Vol 4446 (4) ◽  
pp. 401 ◽  
Author(s):  
F. NAZARI ◽  
O. MIRSHAMSI ◽  
A. SARI ◽  
M. ALIABADIAN ◽  
P. MARTÍNEZ ARBIZU

A survey of copepods from intertidal zone of the Persian Gulf and the Gulf of Oman resulted in discovery of three new species belonging to the family Canuellidae Lang, 1944. This work contributes to the final aim to describe meiobenthic copepods from this region and is the first description of meiobenthic copepods from Iranian coastline. The new species belong to the genera Brianola Monard, 1926, Canuella, T. & A. Scott, 1893, and Scottolana Huys, 2009. Compared to other congeners, Brianola haliensis sp. nov. is unique in the armature of the first leg, number of segments and setation of the antennary endopod and exopod. Canuella persica sp. nov. is easily distinguishable from its congeners by the shape of furcal rami and male genitalia. Scottolana gomezi sp. nov. is assigned to the longipes-group by the presence of two and three post-genital somites in the female and male, respectively. It is closely related to S. geei (Mu & Huys, 2004) recorded from the Bohai Sea, China, but can be distinguished by its eight-segmented antennary exopod, mouthparts setation, and shape of the furcal rami. 


2021 ◽  
Vol 13 (7) ◽  
pp. 18846-18852
Author(s):  
Sayali Nerurkar ◽  
Deepak Apte

We report new findings of live specimens of Nassarius persicus (Martens, 1874) and N. tadjallii Moolenbeek, 2007, extending their range to the Gulf of Kachchh, Gujarat, India. The known distribution of both species was limited: N. persicus was distributed in the Persian Gulf, Gulf of Oman, and Karachi in Pakistan; N. tadjallii was reported from the Persian Gulf and the Gulf of Oman. We also provide comprehensive taxonomic descriptions of both species, along with additional morphological and ecological information.


Sign in / Sign up

Export Citation Format

Share Document