High performance Au/PZT/TiOxNy/Si MFIS structure for next generation ferroelectric memory applications

2015 ◽  
Author(s):  
Deepak K. Sharma ◽  
Robin Khosla ◽  
Satinder K. Sharma
Soft Matter ◽  
2021 ◽  
Author(s):  
Yang Yu ◽  
Fengjin Xie ◽  
Xinpei Gao ◽  
Liqiang Zheng

The next generation of high-performance flexible electronics has put forward new demands to the development of ionic conductive hydrogels. In recent years, many efforts have been made toward developing double-network...


Author(s):  
Chenhui WANG ◽  
Nobuyuki Sakai ◽  
Yasuo Ebina ◽  
Takayuki KIKUCHI ◽  
Monika Snowdon ◽  
...  

Lithium-sulfur batteries have high promise for application in next-generation energy storage. However, further advances have been hindered by various intractable challenges, particularly three notorious problems: the “shuttle effect”, sluggish kinetics...


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 229
Author(s):  
Roberto Bergamaschini ◽  
Elisa Vitiello

The quest for high-performance and scalable devices required for next-generation semiconductor applications inevitably passes through the fabrication of high-quality materials and complex designs [...]


Author(s):  
Xiaohui Zhao ◽  
Chonglong Wang ◽  
Ziwei Li ◽  
Xuechun Hu ◽  
Amir A. Razzaq ◽  
...  

The lithium sulfur (Li-S) batteries have a high theoretical specific capacity (1675 mAh g-1) and energy density (2600 Wh kg-1), exerting a high perspective as the next-generation rechargeable batteries for...


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Liang Sun ◽  
Yu-Xing Zhou ◽  
Xu-Dong Wang ◽  
Yu-Han Chen ◽  
Volker L. Deringer ◽  
...  

AbstractThe Ge2Sb2Te5 alloy has served as the core material in phase-change memories with high switching speed and persistent storage capability at room temperature. However widely used, this composition is not suitable for embedded memories—for example, for automotive applications, which require very high working temperatures above 300 °C. Ge–Sb–Te alloys with higher Ge content, most prominently Ge2Sb1Te2 (‘212’), have been studied as suitable alternatives, but their atomic structures and structure–property relationships have remained widely unexplored. Here, we report comprehensive first-principles simulations that give insight into those emerging materials, located on the compositional tie-line between Ge2Sb1Te2 and elemental Ge, allowing for a direct comparison with the established Ge2Sb2Te5 material. Electronic-structure computations and smooth overlap of atomic positions (SOAP) similarity analyses explain the role of excess Ge content in the amorphous phases. Together with energetic analyses, a compositional threshold is identified for the viability of a homogeneous amorphous phase (‘zero bit’), which is required for memory applications. Based on the acquired knowledge at the atomic scale, we provide a materials design strategy for high-performance embedded phase-change memories with balanced speed and stability, as well as potentially good cycling capability.


Author(s):  
Longtao Ren ◽  
Qian Wang ◽  
Yajie Li ◽  
Cejun Hu ◽  
Yajun Zhao ◽  
...  

Rechargeable lithium-sulfur (Li–S) batteries are considered one of the most promising next-generation energy storage devices because of their high theoretical energy density. However, the dissolution of lithium polysulfides (LiPSs) in...


2020 ◽  
Vol 8 (27) ◽  
pp. 13619-13629 ◽  
Author(s):  
Asif Abdullah Khan ◽  
Md Masud Rana ◽  
Guangguang Huang ◽  
Nanqin Mei ◽  
Resul Saritas ◽  
...  

A high-performance perovskite/polymer piezoelectric nanogenerator for next generation self-powered wireless micro/nanodevices.


Sign in / Sign up

Export Citation Format

Share Document