A wind power forecasting system based on the weather research and forecasting model and Kalman filtering over a wind-farm in Japan

2016 ◽  
Vol 8 (1) ◽  
pp. 013302 ◽  
Author(s):  
Yuzhang Che ◽  
Xindong Peng ◽  
Luca Delle Monache ◽  
Takayuki Kawaguchi ◽  
Feng Xiao
2013 ◽  
Vol 133 (4) ◽  
pp. 366-372 ◽  
Author(s):  
Isao Aoki ◽  
Ryoichi Tanikawa ◽  
Nobuyuki Hayasaki ◽  
Mitsuhiro Matsumoto ◽  
Shigero Enomoto

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 338
Author(s):  
Lorenzo Donadio ◽  
Jiannong Fang ◽  
Fernando Porté-Agel

In the past two decades, wind energy has been under fast development worldwide. The dramatic increase of wind power penetration in electricity production has posed a big challenge to grid integration due to the high uncertainty of wind power. Accurate real-time forecasts of wind farm power outputs can help to mitigate the problem. Among the various techniques developed for wind power forecasting, the hybridization of numerical weather prediction (NWP) and machine learning (ML) techniques such as artificial neural networks (ANNs) are attracting many researchers world-wide nowadays, because it has the potential to yield more accurate forecasts. In this paper, two hybrid NWP and ANN models for wind power forecasting over a highly complex terrain are proposed. The developed models have a fine temporal resolution and a sufficiently large prediction horizon (>6 h ahead). Model 1 directly forecasts the energy production of each wind turbine. Model 2 forecasts first the wind speed, then converts it to the power using a fitted power curve. Effects of various modeling options (selection of inputs, network structures, etc.) on the model performance are investigated. Performances of different models are evaluated based on four normalized error measures. Statistical results of model predictions are presented with discussions. Python was utilized for task automation and machine learning. The end result is a fully working library for wind power predictions and a set of tools for running the models in forecast mode. It is shown that the proposed models are able to yield accurate wind farm power forecasts at a site with high terrain and flow complexities. Especially, for Model 2, the normalized Mean Absolute Error and Root Mean Squared Error are obtained as 8.76% and 13.03%, respectively, lower than the errors reported by other models in the same category.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3586 ◽  
Author(s):  
Sizhou Sun ◽  
Jingqi Fu ◽  
Ang Li

Given the large-scale exploitation and utilization of wind power, the problems caused by the high stochastic and random characteristics of wind speed make researchers develop more reliable and precise wind power forecasting (WPF) models. To obtain better predicting accuracy, this study proposes a novel compound WPF strategy by optimal integration of four base forecasting engines. In the forecasting process, density-based spatial clustering of applications with noise (DBSCAN) is firstly employed to identify meaningful information and discard the abnormal wind power data. To eliminate the adverse influence of the missing data on the forecasting accuracy, Lagrange interpolation method is developed to get the corrected values of the missing points. Then, the two-stage decomposition (TSD) method including ensemble empirical mode decomposition (EEMD) and wavelet transform (WT) is utilized to preprocess the wind power data. In the decomposition process, the empirical wind power data are disassembled into different intrinsic mode functions (IMFs) and one residual (Res) by EEMD, and the highest frequent time series IMF1 is further broken into different components by WT. After determination of the input matrix by a partial autocorrelation function (PACF) and normalization into [0, 1], these decomposed components are used as the input variables of all the base forecasting engines, including least square support vector machine (LSSVM), wavelet neural networks (WNN), extreme learning machine (ELM) and autoregressive integrated moving average (ARIMA), to make the multistep WPF. To avoid local optima and improve the forecasting performance, the parameters in LSSVM, ELM, and WNN are tuned by backtracking search algorithm (BSA). On this basis, BSA algorithm is also employed to optimize the weighted coefficients of the individual forecasting results that produced by the four base forecasting engines to generate an ensemble of the forecasts. In the end, case studies for a certain wind farm in China are carried out to assess the proposed forecasting strategy.


2016 ◽  
Vol 40 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Jingxin Guo ◽  
Xiao-Yu Zhang ◽  
Wenling Jang ◽  
Hongqing Wang

2019 ◽  
Vol 135 ◽  
pp. 674-686 ◽  
Author(s):  
Miguel A. Prósper ◽  
Carlos Otero-Casal ◽  
Felipe Canoura Fernández ◽  
Gonzalo Miguez-Macho

2013 ◽  
Vol 341-342 ◽  
pp. 1303-1307 ◽  
Author(s):  
Jian Dong Mao ◽  
Xiao Jing Zhang ◽  
Juan Li

Accurate short-term wind power forecasting has important significance to safety, stability and economy of power system dispatching and also it is a difficult problem in practical engineering application. In this paper, by use of the data of numerical weather forecast, such as wind speed, wind direction, temperature, relative humidity and pressure of atmosphere, a short-term wind power forecasting system based on BP neural network has been developed. For verifying the feasibility of the system, some experiments have been were carried out. The results show that the system is capable of predicting accurately the wind power of future 24 hours and the forecasting accuracy of 85.6% is obtained. The work of this paper has important engineering directive significance to the similar wind power forecasting system.


Sign in / Sign up

Export Citation Format

Share Document