Single crystal elastic constants evaluated with surface acoustic waves generated and detected by lasers within polycrystalline steel samples

2016 ◽  
Vol 119 (4) ◽  
pp. 043103 ◽  
Author(s):  
D. Gasteau ◽  
N. Chigarev ◽  
L. Ducousso-Ganjehi ◽  
V. E. Gusev ◽  
F. Jenson ◽  
...  
1992 ◽  
Vol 7 (8) ◽  
pp. 2248-2256 ◽  
Author(s):  
Jin O. Kim ◽  
Jan D. Achenbach ◽  
Meenam Shinn ◽  
Scott A. Barnett

Using the measured elastic constants of TiN and NbN single crystals with cubic symmetry, the effective elastic constants of single-crystal TiN/NbN superlattice films with tetragonal symmetry, namely c11, c12, c13, c33, c44, and c66 have been calculated for various thickness ratios of the layers. Using a line-focus acoustic microscope, measurements of surface acoustic waves (SAWs) have been carried out on single-crystal TiN/NbN superlattice films grown on the (001) plane of cubic crystal MgO substrates. The phase velocities measured as functions of the angle of propagation display the expected anisotropic nature of cubic crystals. Dispersion curves of SAWs propagating along the symmetry axes have been obtained by measuring wave velocities for various film thicknesses and frequencies. The SAW dispersion curves calculated from the effectiveelastic constants and the effective mass density of the superlattice films show very good agreement with experimental results. The results of this paper exhibit no anomalous dependence of the elastic constants on the superlattice period of TiN/NbN superlattices.


2004 ◽  
Vol 14 (03) ◽  
pp. 837-846 ◽  
Author(s):  
GANG BU ◽  
DAUMANTAS CIPLYS ◽  
MICHAEL S. SHUR ◽  
LEO J. SCHOWALTER ◽  
SANDRA B. SCHUJMAN ◽  
...  

We report on the velocity V and the electromechanical coupling coefficient K2 of the first and the second leaky surface acoustic waves in various propagation directions in the a-plane AlN single-crystal. For c-propagation direction, the second leaky wave exhibited the velocity of 11016 m/s and K2 of 0.45%. For this direction, the temperature coefficient of frequency was found to be -30 ppm/°C. A near match of the velocities of the plane and leaky waves in the a-plane AlN allowed us to establish analytical relationships between the piezoelectric and elastic constants. A full set of elastic and piezoelectric constants of AlN has been evaluated by fitting the measured and calculated dependencies of velocities and electromechanical coupling coefficients on the propagation direction for both Rayleigh and leaky waves.


1999 ◽  
Vol 593 ◽  
Author(s):  
A.C. Ferrari ◽  
J. Robertson ◽  
R. Pastorelli ◽  
M.G. Beghi ◽  
C.E. Bottani

ABSTRACTThe elastic constants of thin Diamond-Like Carbon (DLC) films supply important information, but their measurement is difficult. Standard nanoindentation does not directly measure the elastic constants and has strong limitations particularly in the case of hard thin films on softer substrates, such as tetrahedral amorphous carbon on Si. Surface acoustic waves provide a better mean to investigate elastic properties. Surface Brillouin scattering (SBS) intrinsically probes acoustic waves of the wavelength which is appropriate to test the properties of films in the tens to hundreds of nanometers thickness range. SBS can be used to derive all the isotropic elastic constants of hard-on-soft and soft-on-hard amorphous carbon films of different kinds, with thickness down to less than 10 nm. The results help to resolve the previous uncertainties in mechanical data. The Young's modulus of tetrahedral amorphous carbon (ta-C) turns out to be lower than that of diamond, while the moduli of hydrogenated ta-C (ta-C:H) are considerably lower than those of ta-C because of the weakening effect of C-H bonding.


2018 ◽  
Vol 8 (11) ◽  
pp. 2319 ◽  
Author(s):  
Evgeny Glushkov ◽  
Natalia Glushkova ◽  
Bernard Bonello ◽  
Lu Lu ◽  
Eric Charron ◽  
...  

In this paper we demonstrate a high potential of transient grating method to study the behavior of surface acoustic waves in nanowires-based composite structures. The investigation of dispersion curves is done by adjusting the calculated dispersion curves to the experimental results. The wave propagation is simulated using the explicit integral and asymptotic representations for laser-generated surface acoustic waves in layered anisotropic waveguides. The analysis of the behavior permits to determine all elastic constants and effective elastic moduli of constituent materials, which is important both for technological applications of these materials and for basic scientific studies of their physical properties.


1975 ◽  
Vol 53 (6) ◽  
pp. 581-582 ◽  
Author(s):  
T. J. Langill ◽  
J. Trivisonno

A modified ultrasonic pulse overlap technique was employed to measure the single crystal elastic constants of high purity gallium from 4.2 K to 190 K. The results are compared with data obtained by a technique which employed direct electromagnetic generation of acoustic waves as well as with earlier pulse echo measurements.


2016 ◽  
Vol 109 (15) ◽  
pp. 151906 ◽  
Author(s):  
R. A. Duncan ◽  
F. Hofmann ◽  
A. Vega-Flick ◽  
J. K. Eliason ◽  
A. A. Maznev ◽  
...  

1999 ◽  
Vol 11 (28) ◽  
pp. L323-L327 ◽  
Author(s):  
A de Bernabé ◽  
C Prieto ◽  
L González ◽  
Y González ◽  
A G Every

Sign in / Sign up

Export Citation Format

Share Document