scholarly journals Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption

AIP Advances ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 035101 ◽  
Author(s):  
M. Y. Malik ◽  
M. Bibi ◽  
Farzana Khan ◽  
T. Salahuddin
2020 ◽  
Vol 9 (1) ◽  
pp. 338-351
Author(s):  
Usha Shankar ◽  
N. B. Naduvinamani ◽  
Hussain Basha

AbstractA two-dimensional mathematical model of magnetized unsteady incompressible Williamson fluid flow over a sensor surface with variable thermal conductivity and exterior squeezing with viscous dissipation effect is investigated, numerically. Present flow model is developed based on the considered flow geometry. Effect of Lorentz forces on flow behaviour is described in terms of magnetic field and which is accounted in momentum equation. Influence of variable thermal conductivity on heat transfer is considered in the energy equation. Present investigated problem gives the highly complicated nonlinear, unsteady governing flow equations and which are coupled in nature. Owing to the failure of analytical/direct techniques, the considered physical problem is solved by using Runge-Kutta scheme (RK-4) via similarity transformations approach. Graphs and tables are presented to describe the physical behaviour of various control parameters on flow phenomenon. Temperature boundary layer thickens for the amplifying value of Weissenberg parameter and permeable velocity parameter. Velocity profile decreased for the increasing squeezed flow index and permeable velocity parameter. Increasing magnetic number increases the velocity profile. Magnifying squeezed flow index magnifies the magnitude of Nusselt number. Also, RK-4 efficiently solves the highly complicated nonlinear complex equations that are arising in the fluid flow problems. The present results in this article are significantly matching with the published results in the literature.


2016 ◽  
Vol 14 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Ahmed M. Megahed

AbstractIn this paper, we introduce a theoretical and numerical study for the effects of thermal buoyancy and constant heat flux on the Casson fluid flow and heat transfer over an exponentially stretching sheet taking into account the effects of variable thermal conductivity, heat generation/absorption and viscous dissipation. The governing partial differential equations are transformed into coupled, non-linear ordinary differential equations by using suitable transformations. Numerical solutions to these equations are obtained by using the fourth order Runge-Kutta method with the shooting technique. The effects of various physical parameters which governing the flow and heat treansfer such as the buoyancy parameter, the thermal conductivity parameter, heat generation or absorption parameter and the Prandtl number on velocity and temperature are discussed by using graphical approach. Moreover, numerical results indicate that the local skin-friction coefficient and the local Nusselt number are strongly affected by the constant heat flux.


2017 ◽  
Vol 377 ◽  
pp. 1-16
Author(s):  
Raseelo Joel Moitsheki ◽  
Oluwole Daniel Makinde

In this paper we consider heat transfer in a hot body with different geometries. Here, the thermal conductivity and internal heat generation are both temperature-dependent. This assumption rendered the model considered to be nonlinear. We assume that thermal conductivity is given by a power law function. We employ the preliminary group classification to determine the cases of internal heat generation for which the principal Lie algebra extends by one. Exact solutions are constructed for the case when thermal conductivity is a differential consequence of internal heat generation term. We derive the approximate numerical solutions for the cases where exact solutions are difficult to construct or are nonexistent. The effects of parameters appearing in the model on temperature profile are studied.


Sign in / Sign up

Export Citation Format

Share Document