Transient flow and heat transfer mechanism for Williamson-nanomaterials caused by a stretching cylinder with variable thermal conductivity

2019 ◽  
Vol 25 (9) ◽  
pp. 3287-3297 ◽  
Author(s):  
Hashim ◽  
Aamir Hamid ◽  
Masood Khan

Author(s):  
Yigang Luan ◽  
Lianfeng Yang ◽  
Bo Wan ◽  
Tao Sun

Gas turbine engines have been widely used in modern industry especially in the aviation, marine and energy fields. The efficiency of gas turbines directly affects the economy and emissions. It’s acknowledged that the higher turbine inlet temperatures contribute to the overall gas turbine engine efficiency. Since the components are subject to the heat load, the internal cooling technology of turbine blades is of vital importance to ensure the safe and normal operation. This paper is focused on exploring the flow and heat transfer mechanism in matrix cooling channels. In order to analyze the internal flow field characteristics of this cooling configuration at a Reynolds number of 30000 accurately, large eddy simulation method is carried out. Methods of vortex identification and field synergy are employed to study its flow field. Cross-sectional views of velocity in three subchannels at different positions have been presented. The results show that the airflow is strongly disturbed by the bending part. It’s concluded that due to the bending structure, the airflow becomes complex and disordered. When the airflow goes from the inlet to the turning, some small-sized and discontinuous vortices are formed. Behind the bending structure, the size of the vortices becomes big and the vortices fill the subchannels. Because of the structure of latticework, the airflow is affected by each other. Airflow in one subchannel can exert a shear force on another airflow in the opposite subchannel. It’s the force whose direction is the same as the vortex that enhances the longitudinal vortices. And the longitudinal vortices contribute to the energy exchange of the internal airflow and the heat transfer between airflow and walls. Besides, a comparison of the CFD results and the experimental data is made to prove that the numerical simulation methods are reasonable and acceptable.



2019 ◽  
Vol 11 (1) ◽  
pp. 153-156
Author(s):  
István Padrah ◽  
Judit Pásztor ◽  
Rudolf Farmos

Abstract Thermal conduction is a heat transfer mechanism. It is present in our everyday lives. Studying thermal conductivity helps us better understand the phenomenon of heat conduction. The goal of this paper is to measure the thermal conductivity of various materials and compare results with the values provided by the manufacturers. To achieve this we assembled a measuring instrument and performed measurements on heat insulating materials.



This chapter will discuss in detail the various aspects of nanofluids, form preparation of nanofluids, characterization and flow and energy transportation mechanisms of nanofluids. Preparation of nanofluids has been performed using various methods where one step and two step methods are widely known. These methods are discussed in detail for various nanoparticles with stabilizing agents for stable production of nanofluids. Further, the characterization techniques of various aspects of nanofluds including thermal conductivity and factors influencing the thermal conductivity of nanofluids are introduced in depth. The chapter also sheds light on the experimental analysis of flow and heat transfer of naofluids, natural convection analysis of naofluids, and boiling heat transfer of nanofluids.



Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2626
Author(s):  
Aurelia Blazejczyk ◽  
Cezariusz Jastrzebski ◽  
Michał Wierzbicki

This article introduces an innovative approach to the investigation of the conductive–radiative heat transfer mechanism in expanded polystyrene (EPS) thermal insulation at negligible convection. Closed-cell EPS foam (bulk density 14–17 kg·m−3) in the form of panels (of thickness 0.02–0.18 m) was tested with 1–15 µm graphite microparticles (GMP) at two different industrial concentrations (up to 4.3% of the EPS mass). A heat flow meter (HFM) was found to be precise enough to observe all thermal effects under study: the dependence of the total thermal conductivity on thickness, density, and GMP content, as well as the thermal resistance relative gain. An alternative explanation of the total thermal conductivity “thickness effect” is proposed. The conductive–radiative components of the total thermal conductivity were separated, by comparing measured (with and without Al-foil) and simulated (i.e., calculated based on data reported in the literature) results. This helps to elucidate why a small addition of GMP (below 4.3%) forces such an evident drop in total thermal conductivity, down to 0.03 W·m−1·K−1. As proposed, a physical cause is related to the change in mechanism of the heat transfer by conduction and radiation. The main accomplishment is discovering that the change forced by GMP in the polymer matrix thermal conduction may dominate the radiation change. Hence, the matrix conduction component change is considered to be the major cause of the observed drop in total thermal conductivity of EPS insulation. At the microscopic level of the molecules or chains (e.g., in polymers), significant differences observed in the intensity of Raman spectra and in the glass transition temperature increase on differential scanning calorimetry(DSC) thermograms, when comparing EPS foam with and without GMP, complementarily support the above statement. An additional practical achievement is finding the maximum thickness at which one may reduce the “grey” EPS insulating layer, with respect to “dotted” EPS at a required level of thermal resistance. In the case of the thickest (0.30 m) panels for a passive building, above 18% of thickness reduction is found to be possible.



2016 ◽  
Vol 14 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Ahmed M. Megahed

AbstractIn this paper, we introduce a theoretical and numerical study for the effects of thermal buoyancy and constant heat flux on the Casson fluid flow and heat transfer over an exponentially stretching sheet taking into account the effects of variable thermal conductivity, heat generation/absorption and viscous dissipation. The governing partial differential equations are transformed into coupled, non-linear ordinary differential equations by using suitable transformations. Numerical solutions to these equations are obtained by using the fourth order Runge-Kutta method with the shooting technique. The effects of various physical parameters which governing the flow and heat treansfer such as the buoyancy parameter, the thermal conductivity parameter, heat generation or absorption parameter and the Prandtl number on velocity and temperature are discussed by using graphical approach. Moreover, numerical results indicate that the local skin-friction coefficient and the local Nusselt number are strongly affected by the constant heat flux.



Sign in / Sign up

Export Citation Format

Share Document