scholarly journals Theoretical analysis and simulation of the influence of self-bunching effects and longitudinal space charge effects on the propagation of keV electron bunch produced by a novel S-band Micro-Pulse electron Gun

AIP Advances ◽  
2016 ◽  
Vol 6 (6) ◽  
pp. 065327 ◽  
Author(s):  
Jifei Zhao ◽  
Xiangyang Lu ◽  
Kui Zhou ◽  
Ziqin Yang ◽  
Deyu Yang ◽  
...  
Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1587
Author(s):  
Dun Lu ◽  
Wenjie Fu ◽  
Xiaotong Guan ◽  
Tongbin Yang ◽  
Chaoyang Zhang ◽  
...  

Low-voltage compact gyrotron is under development at the University of Electronic Science and Technology of China (UESTC) for industrial applications. Due to the low operating voltage, the relativistic factor is weak, and interaction efficiency could not be high. Therefore, a magnetron-injection gun (MIG) with an extremely high-velocity ratio α (around 2.5) is selected to improve the interaction efficiency. As beam voltage drops, space charge effects become more and more obvious, thus a more detailed analysis of velocity-ratio α is significant to perform low-voltage gyrotrons, including beam voltage, beam current, modulating voltage, depression voltage, cathode magnetic field, and magnetic depression ratio. Theoretical analysis and simulation optimization are adopted to demonstrate the feasibility of an ultra-high velocity ratio, which considers the space charge effects. Based on theoretical analysis, an electron gun with a transverse to longitudinal velocity ratio 2.55 and velocity spread 9.3% is designed through simulation optimization. The working voltage and current are 10 kV and 0.46 A with cathode emission density 1 A/cm2 for a 75 GHz hundreds of watts’ output power gyrotron.


Open Physics ◽  
2011 ◽  
Vol 9 (4) ◽  
Author(s):  
Anthony Ashmore ◽  
Riccardo Bartolini ◽  
Nicolas Delerue

AbstractLaser-driven Plasma Accelerators (LPA) have successfully generated high energy, high charge electron bunches which can reach many kA peak current, over short distances. Space charge issues, even in transport lines as simple as a drift section, have to be carefully taken into account since they can degrade the beam quality, preventing any further application of such electron beams. We analyse the space charge effects within an electron bunch with numerical simulations in order to assess their effect on the beam. We use LPA beam parameters published in previous experimental studies. These studies can give an indication of the working point where space charge can dominate the beam dynamics and has to be taken into account in the application of such beams.


Instruments ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 9
Author(s):  
Sandro Palestini

The subject of space charge in ionization detectors is reviewed, showing how the observations and the formalism used to describe the effects have evolved, starting with applications to calorimeters and reaching recent, large time-projection chambers. General scaling laws, and different ways to present and model the effects are presented. The relations between space-charge effects and the boundary conditions imposed on the side faces of the detector are discussed, together with a design solution that mitigates some of the effects. The implications of the relative size of drift length and transverse detector size are illustrated. Calibration methods are briefly discussed.


Author(s):  
S. Machida ◽  
C. Prior ◽  
S. Gilardoni ◽  
M. Giovannozzi ◽  
A. Huschauer ◽  
...  

Author(s):  
Giuliano Franchetti ◽  
Simone Gilardoni ◽  
Alexander Huschauer ◽  
Frank Schmidt ◽  
Raymond Wasef

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Anna Sitek ◽  
Kristinn Torfason ◽  
Andrei Manolescu ◽  
Ágúst Valfells

Sign in / Sign up

Export Citation Format

Share Document