scholarly journals Structural performance of T-stub end plate joints to thin walled concrete filled steel tube columns

2016 ◽  
Author(s):  
A. Z. Nazrul Azmi ◽  
P. Clotilda ◽  
A. H. Hanizah ◽  
I. Azmi
2018 ◽  
Vol 15 (1) ◽  
pp. 59
Author(s):  
NAZRUL AZMI AHMAD ZAMRI ◽  
CLOTILDA PETRUS ◽  
AZMI IBRAHIM ◽  
HANIZAH AB HAMID

The application of concrete filled steel tubes (CFSTs) as composite members has widely been used around the world and is becoming popular day by day for structural application especially in earthquake regions. This paper indicates that an experimental study was conducted to comprehend the behaviour of T-stub end plates connected to concrete filled thin-walled steel tube (CFTST) with different types of bolts and are subjected to pullout load. The bolts used are normal type bolt M20 grade 8.8 and Lindapter Hollo-bolt HB16 and HB20. A series of 10 mm thick T-stub end plates were fastened to 2 mm CFTST of 200 mm x 200 mm in cross-section. All of the specimens were subjected to monotonic pull-out load until failure. Based on test results, the Lidapter Hollo-bolts showed better performance compare to normal bolts. The highest ultimate limit load for T-stub end plate fasten with Lindapter Hollo-bolt is four times higher than with normal bolt although all end plates show similar behaviour and failure mode patterns. It can be concluded that T-stub end plate with Lindapter Hollo-bolt shows a better performance in the service limit and ultimate limit states according to the regulations in the design codes.


2018 ◽  
Vol 15 (1) ◽  
pp. 59-74
Author(s):  
Nazrul Azmi Ahmad Zamri ◽  
Clotilda Petrus ◽  
Azmi Ibrahim ◽  
Hanizah Ab Hamid

The application of concrete filled steel tubes (CFSTs) as composite members has widely been used around the world and is becoming popular day by day for structural application especially in earthquake regions. This paper indicates that an experimental study was conducted to comprehend the behaviour of T-stub end plates connected to concrete filled thin-walled steel tube (CFTST) with different types of bolts and are subjected to pullout load. The bolts used are normal type bolt M20 grade 8.8 and Lindapter Hollo-bolt HB16 and HB20. A series of 10 mm thick T-stub end plates were fastened to 2 mm CFTST of 200 mm x 200 mm in cross-section. All of the specimens were subjected to monotonic pull-out load until failure. Based on test results, the Lidapter Hollo-bolts showed better performance compare to normal bolts. The highest ultimate limit load for T-stub end plate fasten with Lindapter Hollo-bolt is four times higher than with normal bolt although all end plates show similar behaviour and failure mode patterns. It can be concluded that T-stub end plate with Lindapter Hollo-bolt shows a better performance in the service limit and ultimate limit states according to the regulations in the design codes.


2018 ◽  
Vol 15 (1) ◽  
pp. 59
Author(s):  
Nazrul Azmi Ahmad Zamri ◽  
Clotilda Petrus ◽  
Azmi Ibrahim ◽  
Hanizah Ab Hamid

The application of concrete filled steel tubes (CFSTs) as composite members has widely been used around the world and is becoming popular day by day for structural application especially in earthquake regions. This paper indicates that an experimental study was conducted to comprehend the behaviour of T-stub end plates connected to concrete filled thin-walled steel tube (CFTST) with different types of bolts and are subjected to pull-out load. The bolts used are normal type bolt M20 grade 8.8 and Lindapter Hollo-bolt HB16 and HB20. A series of 10 mm thick T-stub end plates were fastened to 2 mm CFTST of 200 mm x 200 mm in cross-section. All of the specimens were subjected to monotonic pull-out load until failure. Based on test results, the Lidapter Hollo-bolts showed better performance compare to normal bolts. The highest ultimate limit load for T-stub end plate fasten with Lindapter Hollo-bolt is four times higher than with normal bolt although all end plates show similar behaviour and failure mode patterns. It can be concluded that T-stub end plate with Lindapter Hollo-bolt shows a better performance in the service limit and ultimate limit states according to the regulations in the design codes.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1098 ◽  
Author(s):  
Xuetao Lyu ◽  
Yang Xu ◽  
Qian Xu ◽  
Yang Yu

This study investigated the axial compressive performance of six thin-walled concrete-filled steel tube (CFST) square column specimens with steel bar stiffeners and two non-stiffened specimens at constant temperatures of 20 °C, 100 °C, 200 °C, 400 °C, 600 °C and 800 °C. The mechanical properties of the specimens at different temperatures were analyzed in terms of the ultimate bearing capacity, failure mode, and load–displacement curve. The experiment results show that at high temperature, even though the mechanical properties of the specimens declined, leading to a decrease of the ultimate bearing capacity, the ductility and deformation capacity of the specimens improved inversely. Based on finite element software ABAQUS, numerical models were developed to calculate both temperature and mechanical fields, the results of which were in good agreement with experimental results. Then, the stress mechanism of eight specimens was analyzed using established numerical models. The analysis results show that with the increase of temperature, the longitudinal stress gradient of the concrete in the specimen column increases while the stress value decreases. The lateral restraint of the stiffeners is capable of restraining the steel outer buckling and enhancing the restraint effect on the concrete.


2012 ◽  
Vol 193-194 ◽  
pp. 1461-1464
Author(s):  
Bai Shou Li ◽  
Ai Hua Jin

Based on the characteristics of the special-shaped concrete-filled steel tubes and consideration of material nonlinearity of constitutive relation, stimulation of 6 T-shaped thin-walled ribbed and un-ribbed concrete-filled steel tube short columns is implemented, as well as comparable analysis of stress, strain, displacement and bearing capacity, through the finite element analysis software ANSYS. The result indicates that the rib can effectively improve the ductility, delaying the buckling occurs, which enhances the core concrete confinement effect, so as the stimulated ultimate bearing capacity which is greater than nominal ultimate bearing capacity.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shufeng Li ◽  
Di Zhao ◽  
Yating Zhou

PurposeConcrete-filled steel tube structures are widely used for their high bearing capacity, good plasticity, good fire resistance and optimal seismic performance. In order to give full play to the advantages of concrete-filled steel tube, this paper proposes a prefabricated concrete-filled steel tube frame joint.Design/methodology/approachThe concrete-filled steel tube column and beam are connected by high-strength bolted end-plate, and the steel bars in the concrete beam are welded vertically with the end-plates through the enlarged pier head. In addition, the finite element software ABAQUS is used numerically to study the seismic performance of the structure.FindingsThe ductility coefficient of the joint is in 1.72–6.82, and greater than 2.26 as a whole. The equivalent viscous damping coefficient of the joint is 0.13–3.03, indicating that the structure has good energy dissipation capacity.Originality/valueThe structure is convenient for construction and overcomes the shortcomings of the previous on-site welding and on-site concrete pouring. The high-strength bolted end-plate connection can effectively transfer the load, and each component can give play to its material characteristics.


2013 ◽  
Vol 284-287 ◽  
pp. 1390-1395
Author(s):  
Geon Ho Hong ◽  
Won Ki Kim ◽  
In Rak Choi ◽  
Kyung Soo Chung

Concrete filled steel tube has been consistently used in tall buildings as it represents excellent structural performance and economical efficiency compared with other structural systems. The use of high strength steel in concrete filled steel tube can reduce the column size and increase the effective space in the buildings. But, the limit of width-to-thickness ratio to prevent local buckling is an obstacle to applying the high strength steel as it considerably decrease following to the strength increase. This paper addresses the effect of steel plate slenderness limit on the compression behavior in 800 MPa Grade steel. Four short column specimens were tested under axial compression. Main test variables were width-to-thickness ratio and shape of section. Test results were analyzed in the viewpoint of local buckling strength, yield strength, maximum strength and plastic deformation capacity of specimens. The experimental results showed that all specimens exceeded the maximum strength of calculated value by design code and represented similar deformation capacity regardless of width-to-thickness ratio. So, the limit of width-to-thickness ratio in high strength steel could be amended less strict.


Sign in / Sign up

Export Citation Format

Share Document