The influence of local mechanisms on large scale seismic vulnerability estimation of masonry building aggregates

Author(s):  
Antonio Formisano ◽  
Nicola Chieffo ◽  
Bartolomeo Milo ◽  
Francesco Fabbrocino
Geosciences ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 59 ◽  
Author(s):  
Nicola Chieffo ◽  
Antonio Formisano

The large-scale seismic risk assessment is a crucial point for safeguarding people and planning adequate mitigation plans in urban areas. The current research work aims at analysing a sector of the historic centre of Senerchia, located in the province of Avellino, in order to assess the seismic vulnerability and damage of old masonry building compounds. First, the typological classification of the inspected building aggregates is developed using the CARTIS form developed by the PLINIVS research centre in collaboration with the Italian Civil Protection Department. The global seismic vulnerability assessment of the building sample is carried out using the macroseismic method according to the EMS-98 scale in order to identify the buildings most susceptible to seismic damage. Furthermore, 12 damage scenarios are developed by means of an appropriate seismic attenuation law. Finally, the expected damage scenarios considering the local hazard effects induced are developed in order to evaluate the damage increment, averagely equal to 50%, due to the seismic amplification of different soil categories.


2015 ◽  
Vol 80 ◽  
pp. 116-138 ◽  
Author(s):  
Antonio Formisano ◽  
Gilda Florio ◽  
Raffaele Landolfo ◽  
Federico M. Mazzolani

Author(s):  
V. Cardinali ◽  
M. T. Cristofaro ◽  
M. Ferrini ◽  
R. Nudo ◽  
B. Paoletti ◽  
...  

Abstract. The seismic vulnerability of masonry building aggregates is very difficult to determine, since it is affected by many uncertainties. The most uncertain quantities concern the historical periodization of structural aggregates. Moreover, the studies made at the urban scale can hardly be thorough, and usually the knowledge achieved on the single units is not fully satisfactory, so that the structural designer has to deal with uncompleted architectonical surveys and partial data; one of the most important problems concerns the lack of knowledge about the boundary conditions between adjacent structures. In order to perform mechanical analyses, an extensive knowledge of materials and techniques adopted is required. In this paper, an integrated methodology for the seismic assessment of building aggregate is presented. It concerns a multidisciplinary knowledge-based approach calibrated over the historical centres and the urban aggregates; the procedure joins different aspects, such as the use of modern technologies for an integrated knowledge, plans reconstructions through archival documents, laser scanner digital survey of urban fronts, non-destructive investigations of the materials. GIS and BIM platforms have been used to implement and collect data in order to perform detailed analyses. The information allowed to assess the seismic vulnerability of the building aggregates and the expected damage scenarios through empirical methodologies. The city of Scarperia, founded a few kilometres from Florence during the Medieval Age and characterized by a medium seismicity, has been chosen as a case study for the presented procedure.


Author(s):  
A. Sandoli ◽  
G. P. Lignola ◽  
B. Calderoni ◽  
A. Prota

AbstractA hybrid seismic fragility model for territorial-scale seismic vulnerability assessment of masonry buildings is developed and presented in this paper. The method combines expert-judgment and mechanical approaches to derive typological fragility curves for Italian residential masonry building stock. The first classifies Italian masonry buildings in five different typological classes as function of age of construction, structural typology, and seismic behaviour and damaging of buildings observed following the most severe earthquakes occurred in Italy. The second, based on numerical analyses results conducted on building prototypes, provides all the parameters necessary for developing fragility functions. Peak-Ground Acceleration (PGA) at Ultimate Limit State attainable by each building’s class has been chosen as an Intensity Measure to represent fragility curves: three types of curve have been developed, each referred to mean, maximum and minimum value of PGAs defined for each building class. To represent the expected damage scenario for increasing earthquake intensities, a correlation between PGAs and Mercalli-Cancani-Sieber macroseismic intensity scale has been used and the corresponding fragility curves developed. Results show that the proposed building’s classes are representative of the Italian masonry building stock and that fragility curves are effective for predicting both seismic vulnerability and expected damage scenarios for seismic-prone areas. Finally, the fragility curves have been compared with empirical curves obtained through a macroseismic approach on Italian masonry buildings available in literature, underlining the differences between the methods.


Author(s):  
Mustafa Hrasnica ◽  
Amir Čaušević ◽  
Nerman Rustempašić

Traditional art of building in Bosnia and Herzegovina comprises brick or stone masonry structures. Most historical buildings belonging to national cultural heritage were made of stone-masonry. The country is situated in seismic active region of South-East Europe. In the case of strong earthquake motion such buildings could suffer heavy damages. Some structural elements of historical buildings, as domes and arches, cracked already by moderate earthquake but without the loss of stability. Substantial damages were caused by recent war disaster. Damages could be accumulated through the history as well. Generally, stone-masonry buildings in Bosnia and Herzegovina can be classified in vulnerability classes between A and C according to European Macroseismic Scale. Design and construction procedures for rehabilitation are presented here with examples of repair and strengthening of mosques, which present historical stone masonry structures dating from the Ottoman period in Bosnia and Herzegovina. Traditional and contemporary materials were used for their rehabilitation. It is important to preserve original forms, especially those of damaged elements. The challenge for structural engineers and architects was to find equilibrium between aesthetical and structural demands.


2019 ◽  
pp. 1142-1173
Author(s):  
Mustafa Hrasnica ◽  
Amir Čaušević ◽  
Nerman Rustempašić

Traditional art of building in Bosnia and Herzegovina comprises brick or stone masonry structures. Most historical buildings belonging to national cultural heritage were made of stone-masonry. The country is situated in seismic active region of South-East Europe. In the case of strong earthquake motion such buildings could suffer heavy damages. Some structural elements of historical buildings, as domes and arches, cracked already by moderate earthquake but without the loss of stability. Substantial damages were caused by recent war disaster. Damages could be accumulated through the history as well. Generally, stone-masonry buildings in Bosnia and Herzegovina can be classified in vulnerability classes between A and C according to European Macroseismic Scale. Design and construction procedures for rehabilitation are presented here with examples of repair and strengthening of mosques, which present historical stone masonry structures dating from the Ottoman period in Bosnia and Herzegovina. Traditional and contemporary materials were used for their rehabilitation. It is important to preserve original forms, especially those of damaged elements. The challenge for structural engineers and architects was to find equilibrium between aesthetical and structural demands.


2014 ◽  
Vol 597 ◽  
pp. 283-290 ◽  
Author(s):  
Angelo Masi ◽  
Andrea Digrisolo ◽  
Giuseppe Santarsiero

The knowledge of the materials’ mechanical properties is a preliminary and important step in the seismic vulnerability assessment of existing buildings. In RC structures, the compressive strength of concrete can have a crucial role on the seismic performance and is usually difficult to estimate. Major seismic codes prescribe that concrete strength has to be determined essentially from in-situ and laboratory tests. In some cases such estimation can be complemented by default values in accordance to standards at the time of construction, therefore analysing the actual concrete properties typically found in RC existing buildings realized in different periods can make available useful data. To this end, in this paper attention has been addressed to public buildings, namely schools and hospitals. A large database made up of about 1500 test results on concrete cores extracted from about 300 RC public buildings located in Basilicata region (Italy), has been prepared and analysed. The relationships between the actual strength values (mean and dispersion) and the construction period of buildings have been studied. Theoretical distributions to approximate the discrete distributions of strength values in different construction periods have been determined, thus providing relevant data for the structural assessment of individual buildings and, especially, for large scale vulnerability evaluations.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Alexandros Tsipianitis ◽  
Yiannis Tsompanakis

Liquid-filled tanks are effective storage infrastructure for water, oil, and liquefied natural gas (LNG). Many such large-scale tanks are located in regions with high seismicity. Therefore, very frequently base isolation technology has to be adopted to reduce the dynamic distress of storage tanks, preventing the structure from typical modes of failure, such as elephant-foot buckling, diamond-shaped buckling, and roof damage caused by liquid sloshing. The cost-effective seismic design of base-isolated liquid storage tanks can be achieved by adopting performance-based design (PBD) principles. In this work, the focus is given on sliding-based systems, namely, single friction pendulum bearings (SFPBs), triple friction pendulum bearings (TFPBs), and mainly on the recently developed quintuple friction pendulum bearings (QFPBs). More specifically, the study is focused on the fragility analysis of tanks isolated by sliding-bearings, emphasizing on isolators’ displacements due to near-fault earthquakes. In addition, a surrogate model has been developed for simulating the dynamic response of the superstructure (tank and liquid content) to achieve an optimal balance between computational efficiency and accuracy.


2017 ◽  
Vol 4 ◽  
pp. 24-30
Author(s):  
Shyam Sundar Basukala ◽  
Prem Nath Maskey

Historic buildings of Nepal are mainly constructed from masonry structure. Since masonry structures are weak in tension which leads to the failure of structure. So, to avoid possible damage in environment lives and property it is urgent to conduct vulnerability assessments. Seismic vulnerability of historic masonry buildings constructed in Bhaktapur at Byasi area is carried out for the case study. Five load bearing masonry buildings were selected out of 147 buildings considering opening percentage, storey and type of floor for modeling in SAP 2000 V10 Various methods of rapid visual screening (FEMA 154, EMS 98) are used to determine the vulnerability of the selected building. The Selected Building response is carried out by linear time history analysis. The seismic vulnerability of masonry structures is determined in terms of fragility curves which represent the probability of failure or damage due to various levels of strong ground motions for different damage state slight, moderate, extensive and collapse. From the result of Rapid Visual Screening (RVS) and Fragility curves of the buildings it is found that whole, buildings are found vulnerable from future earthquake.


Sign in / Sign up

Export Citation Format

Share Document