Seismic Vulnerability Assessment of Masonry Building from Ottoman Period in Bosnia and Herzegovina

2019 ◽  
pp. 1142-1173
Author(s):  
Mustafa Hrasnica ◽  
Amir Čaušević ◽  
Nerman Rustempašić

Traditional art of building in Bosnia and Herzegovina comprises brick or stone masonry structures. Most historical buildings belonging to national cultural heritage were made of stone-masonry. The country is situated in seismic active region of South-East Europe. In the case of strong earthquake motion such buildings could suffer heavy damages. Some structural elements of historical buildings, as domes and arches, cracked already by moderate earthquake but without the loss of stability. Substantial damages were caused by recent war disaster. Damages could be accumulated through the history as well. Generally, stone-masonry buildings in Bosnia and Herzegovina can be classified in vulnerability classes between A and C according to European Macroseismic Scale. Design and construction procedures for rehabilitation are presented here with examples of repair and strengthening of mosques, which present historical stone masonry structures dating from the Ottoman period in Bosnia and Herzegovina. Traditional and contemporary materials were used for their rehabilitation. It is important to preserve original forms, especially those of damaged elements. The challenge for structural engineers and architects was to find equilibrium between aesthetical and structural demands.

Author(s):  
Mustafa Hrasnica ◽  
Amir Čaušević ◽  
Nerman Rustempašić

Traditional art of building in Bosnia and Herzegovina comprises brick or stone masonry structures. Most historical buildings belonging to national cultural heritage were made of stone-masonry. The country is situated in seismic active region of South-East Europe. In the case of strong earthquake motion such buildings could suffer heavy damages. Some structural elements of historical buildings, as domes and arches, cracked already by moderate earthquake but without the loss of stability. Substantial damages were caused by recent war disaster. Damages could be accumulated through the history as well. Generally, stone-masonry buildings in Bosnia and Herzegovina can be classified in vulnerability classes between A and C according to European Macroseismic Scale. Design and construction procedures for rehabilitation are presented here with examples of repair and strengthening of mosques, which present historical stone masonry structures dating from the Ottoman period in Bosnia and Herzegovina. Traditional and contemporary materials were used for their rehabilitation. It is important to preserve original forms, especially those of damaged elements. The challenge for structural engineers and architects was to find equilibrium between aesthetical and structural demands.


2017 ◽  
Vol 4 ◽  
pp. 24-30
Author(s):  
Shyam Sundar Basukala ◽  
Prem Nath Maskey

Historic buildings of Nepal are mainly constructed from masonry structure. Since masonry structures are weak in tension which leads to the failure of structure. So, to avoid possible damage in environment lives and property it is urgent to conduct vulnerability assessments. Seismic vulnerability of historic masonry buildings constructed in Bhaktapur at Byasi area is carried out for the case study. Five load bearing masonry buildings were selected out of 147 buildings considering opening percentage, storey and type of floor for modeling in SAP 2000 V10 Various methods of rapid visual screening (FEMA 154, EMS 98) are used to determine the vulnerability of the selected building. The Selected Building response is carried out by linear time history analysis. The seismic vulnerability of masonry structures is determined in terms of fragility curves which represent the probability of failure or damage due to various levels of strong ground motions for different damage state slight, moderate, extensive and collapse. From the result of Rapid Visual Screening (RVS) and Fragility curves of the buildings it is found that whole, buildings are found vulnerable from future earthquake.


2012 ◽  
Vol 12 (11) ◽  
pp. 3441-3454 ◽  
Author(s):  
N. Ahmad ◽  
Q. Ali ◽  
M. Ashraf ◽  
B. Alam ◽  
A. Naeem

Abstract. Half-Dressed rubble stone (DS) masonry structures as found in the Himalayan region are investigated using experimental and analytical studies. The experimental study included a shake table test on a one-third scaled structural model, a representative of DS masonry structure employed for public critical facilities, e.g. school buildings, offices, health care units, etc. The aim of the experimental study was to understand the damage mechanism of the model, develop damage scale towards deformation-based assessment and retrieve the lateral force-deformation response of the model besides its elastic dynamic properties, i.e. fundamental vibration period and elastic damping. The analytical study included fragility analysis of building prototypes using a fully probabilistic nonlinear dynamic method. The prototypes are designed as SDOF systems assigned with lateral, force-deformation constitutive law (obtained experimentally). Uncertainties in the constitutive law, i.e. lateral stiffness, strength and deformation limits, are considered through random Monte Carlo simulation. Fifty prototype buildings are analyzed using a suite of ten natural accelerograms and an incremental dynamic analysis technique. Fragility and vulnerability functions are derived for the damageability assessment of structures, economic loss and casualty estimation during an earthquake given the ground shaking intensity, essential within the context of risk assessment of existing stock aiming towards risk mitigation and disaster risk reduction.


2012 ◽  
Vol 6 (1) ◽  
pp. 119-120 ◽  
Author(s):  
Gabriele Milani

The Special Issue of The Open Civil Engineering Journal entitled “New trends in the numerical analysis of masonry structures” provides an insight into the most up-to-date nu-merical techniques used at academic and professional level to perform advanced structuralanalyses on masonry struc-tures. Masonry is a building material that has been used for more than ten thousand years. In many countries, masonry structures still amount to 30–50%of the new housing devel-opments. Also, most structures built before the 19th century and still surviving are built with masonry. Masonry is usu-ally described as a heterogeneous material formed by units and joints, with or without mortar, and different bond ar-rangements. Units are such as bricks, blocks, ashlars, adobes, irregular stones and others. Mortar can be clay, bitumen, chalk, lime/cement based mortar, glue or other. The almost infinite possible combinations generated by the geometry, nature and arrangement of units as well as the characteristics of mortars raise doubts about the accuracy of the term “ma-sonry”. Still, much information can be gained from the study of regular masonry structures, in which a periodic repetition of the microstructure occurs due to a constant arrangement of the units (or constant bond). The difficulties in performing advanced testing and pro-viding sufficiently general numerical models for this kind of structures are basically due to the innumerable variations of masonry typologies, the large scatter of in situ material prop-erties and the impossibility of reproducing all in a specimen. Therefore, most of the advanced numerical research carried out in the last decades concentrated in brick / block masonry and its relevance for design. Accurate modelling requires a comprehensive experimental description of the material, which seems mostly available at the present state of knowl-edge. From a numerical point of view, masonry behaviour is quite complex to model, exhibiting non-linearity very early during the loading process, with softening in both tension and compression, low ductility and differed deformations under sustained loads. In addition, masonry is the result of the assemblage of bricks or stones, where mortar is laid, with common geometric irregularities adding further complexity to the problem. The special issue collects ninepapers from experts in the field, including contributions of researchers from six differ-ent countries (Czech Republic, Iran, Italy, Portugal, Spain, Switzerland), either devoted to the utilization of non-standard numerical models for case-studies or presenting new approaches for the interpretation of masonry behaviour in presence of different kinds ofnon-linearity. The effort is always to put the knowledge beyond the existing state-of-the art. Karbassi and Lestuzzi [1]present a fragility analysis per-formed on unreinforced masonry buildings, conducted by means of the so called Applied Element Method (AEM), to define fragility curves of typical masonry buildings which may be regarded as representative of building classes. A se-ries of nonlinear dynamic analyses using AEM are per-formed for a 6-storey stone masonry and a 4-storey brick masonry building using more than 50 ground motion re-cords. The distribution of the structural responses and inter-storey drifts are finally used to develop spectral-based fragil-ity curves for the five European Macro-seismic Scale dam-age grades. In the second paper, Milani et al. [2]perform a detailed non-linear analysis (both pushover and limit analysis) on the San Pietro di Coppito bell tower in L’Aquila, Italy, trying to have an insight into the causes of the collapse occurred dur-ing the devastating 2009 earthquake. Sykora et al. [2]review several topics related to the ho-mogenization of transport processes occurring in historical masonry structures. Particular attention is paid to variations of temperature and moisture fields, whose contribution to structural damage usually far exceeds the effects of me-chanical loadings. The concept of Statistically Equivalent Periodic Unit Cell (SEPUC) is reviewed and utilized to deal with historic masonry and random patterns. Accepting SEPUC as a reliable representative volume element, a Fast Fourier Transform to both the SEPUC and large binary sam-ples of real masonry is used to tackle effective thermal con-ductivities problems. Fully coupled non-stationary heat and moisture transport problems are addressed next in the framework of a two-scale first-order homogenization, with emphases on the application of boundary and initial condi-tions at the meso-scale.


2020 ◽  
Vol 3 (1) ◽  
pp. 92-106
Author(s):  
Kshitiz Paudel

Masonry, the most commonly used building typology is the building of structures from individual units, which are often laid in and bound together by mortar. Masonry structures are the most vulnerable with external forces. Nepal is disaster prone zone and get frequently attack by various hazard such as earthquake, wind storms, flash-floods, fire, landslides, heavy rain fall, lightening and many more. So, in order to maintain resistive structures, seismic vulnerability of structure should be examined. Nepal Population and housing Census 2011, total 3350143 (2,397,441 –Mud bonded bricks/stone and 952,702- Cement Bonded bricks/ stone) houses out of 5423297 (61.77%) are found to be have masonry foundations. So, to link the context of Resistance structures in Nepal’s context first of all, the predominating stone masonry spread widely over Nepal must be checked for their seismic vulnerability. So, a typical residential stone masonry building is taken for this study. Seismic Vulnerability of the Building is examined in accordance with guidance provided by Government of Nepal- Ministry of Physical Planning and Works, 2011 in their guideline which describe the procedure for qualitative and quantitative assessment of structural earthquake vulnerability of public and private buildings in Nepal. Furthermore, Building is modelled and analyzed by using ETABS software. The outcome obtained from ETABS software are used to find the condition of building and to propose method for its strengthening.


Author(s):  
Govinda Khatri ◽  
Govind Prasad Lamichhane

Most stone-masonry structures were built at a time when seismic risk was not considered in their design. Recent moderate to strong earthquakes have confirmed the vulnerability of heritage buildings, especially those constructed with unreinforced-masonry materials in various developing countries, worldwide. Proper assessment of the seismic performance and of the potential deficiency of existing heritage structures forms the basis for determining the degree of intervention needed to preserve their heritage values. Analysis of masonry wall confined by wooden band has been carried out using various structural analysis programs. In analysis appropriately considered and introduced link element such as hook, gap and spring at connecting nodes of vertical and horizontal timber elements. The result shows that the traditional floors and spandrels of the existing structure are the vulnerable parts which need strengthening of them to assure the structural members are able to resist seismic vulnerability. The required improvement and strengthening technique in existing building are proposed and better results are marked. The analysis of the modified structure shows considerably improvement in the dynamic characteristics of the buildings and overall structural response of those.


Author(s):  
A. Sandoli ◽  
G. P. Lignola ◽  
B. Calderoni ◽  
A. Prota

AbstractA hybrid seismic fragility model for territorial-scale seismic vulnerability assessment of masonry buildings is developed and presented in this paper. The method combines expert-judgment and mechanical approaches to derive typological fragility curves for Italian residential masonry building stock. The first classifies Italian masonry buildings in five different typological classes as function of age of construction, structural typology, and seismic behaviour and damaging of buildings observed following the most severe earthquakes occurred in Italy. The second, based on numerical analyses results conducted on building prototypes, provides all the parameters necessary for developing fragility functions. Peak-Ground Acceleration (PGA) at Ultimate Limit State attainable by each building’s class has been chosen as an Intensity Measure to represent fragility curves: three types of curve have been developed, each referred to mean, maximum and minimum value of PGAs defined for each building class. To represent the expected damage scenario for increasing earthquake intensities, a correlation between PGAs and Mercalli-Cancani-Sieber macroseismic intensity scale has been used and the corresponding fragility curves developed. Results show that the proposed building’s classes are representative of the Italian masonry building stock and that fragility curves are effective for predicting both seismic vulnerability and expected damage scenarios for seismic-prone areas. Finally, the fragility curves have been compared with empirical curves obtained through a macroseismic approach on Italian masonry buildings available in literature, underlining the differences between the methods.


Sign in / Sign up

Export Citation Format

Share Document