Numerical calibration of an easy method for seismic behaviour assessment on large scale of masonry building aggregates

2015 ◽  
Vol 80 ◽  
pp. 116-138 ◽  
Author(s):  
Antonio Formisano ◽  
Gilda Florio ◽  
Raffaele Landolfo ◽  
Federico M. Mazzolani
Geosciences ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 59 ◽  
Author(s):  
Nicola Chieffo ◽  
Antonio Formisano

The large-scale seismic risk assessment is a crucial point for safeguarding people and planning adequate mitigation plans in urban areas. The current research work aims at analysing a sector of the historic centre of Senerchia, located in the province of Avellino, in order to assess the seismic vulnerability and damage of old masonry building compounds. First, the typological classification of the inspected building aggregates is developed using the CARTIS form developed by the PLINIVS research centre in collaboration with the Italian Civil Protection Department. The global seismic vulnerability assessment of the building sample is carried out using the macroseismic method according to the EMS-98 scale in order to identify the buildings most susceptible to seismic damage. Furthermore, 12 damage scenarios are developed by means of an appropriate seismic attenuation law. Finally, the expected damage scenarios considering the local hazard effects induced are developed in order to evaluate the damage increment, averagely equal to 50%, due to the seismic amplification of different soil categories.


Author(s):  
A. Sandoli ◽  
G. P. Lignola ◽  
B. Calderoni ◽  
A. Prota

AbstractA hybrid seismic fragility model for territorial-scale seismic vulnerability assessment of masonry buildings is developed and presented in this paper. The method combines expert-judgment and mechanical approaches to derive typological fragility curves for Italian residential masonry building stock. The first classifies Italian masonry buildings in five different typological classes as function of age of construction, structural typology, and seismic behaviour and damaging of buildings observed following the most severe earthquakes occurred in Italy. The second, based on numerical analyses results conducted on building prototypes, provides all the parameters necessary for developing fragility functions. Peak-Ground Acceleration (PGA) at Ultimate Limit State attainable by each building’s class has been chosen as an Intensity Measure to represent fragility curves: three types of curve have been developed, each referred to mean, maximum and minimum value of PGAs defined for each building class. To represent the expected damage scenario for increasing earthquake intensities, a correlation between PGAs and Mercalli-Cancani-Sieber macroseismic intensity scale has been used and the corresponding fragility curves developed. Results show that the proposed building’s classes are representative of the Italian masonry building stock and that fragility curves are effective for predicting both seismic vulnerability and expected damage scenarios for seismic-prone areas. Finally, the fragility curves have been compared with empirical curves obtained through a macroseismic approach on Italian masonry buildings available in literature, underlining the differences between the methods.


Author(s):  
Chitra K. Y.

The environmental DNA(eDNA) is the DNA that is shed by the organisms in their environment by different ways viz. , mucous, faeces, skin, eggs, sperms and also when these organisms die due to natural death or disease. The eDNA will persist for several days. Identification of eDNA is a useful method of determining the organisms present in an aquatic environment like amphibians, reptiles, fishes , insects and larval forms of some of these organisms. By analysing the e-DNA it is possible to monitor the species distribution in water bodies like lakes and ponds simply by collecting a sample of water. The technique can be applied for the survey of the water bodies on a large scale for the genomic, taxonomic as well as pollutional studies. The DNA isolation procedures that are available are laborious and time consuming. Therefore, during the present study, a simplified method was devised i. e. , isolation of eDNA with ethanol after which Feulgen stain was applied to identify and confirm it, as it is an easy method before proceeding to work with the isolated eDNA using other techniqnies for further studies. The Feulgen method is used for the selective staining and the localisation of the DNA in the tissues but is adopted during the present study for the water samples for quick identification of eDNA. The smear of eDNA stained with Feulgen showed dark pink or magenta colour under the microscope where it was concentrated but stained lightly when dispersed and fragmented as observed in the present study. Further studies of the isolated eDNA are in progress in our laboratory for quantifying and sequencing eDNA using latest techniques like next generation sequencing for the identification of fish species in the lakes.


Author(s):  
Nima Aghniaey ◽  
Murat Saatcioglu ◽  
Hassan Aoude

Research on seismic behaviour of shear walls with high-strength steel is limited. A combined experimental and analytical investigation was conducted to assess seismic behaviour of flexure-dominant shear walls. A large-scale concrete shear wall with Grade 690 MPa (ASTM A1035) reinforcement and 84 MPa concrete was tested under simulated seismic loading. The wall was a ¼ -scale of a 6-storey shear wall, with 4.53 m height and 1.45 m length. It sustained a lateral drift of 1.8% prior to developing failure due to the rupturing of longitudinal reinforcement. This is 35% less than the drift capacity of a companion wall reinforced with 400 MPa reinforcement tested earlier. VecTor2 software was used to conduct an analytical parametric study to expand the experimental findings. The results indicate that the reinforcement grade has a significant impact on strength, ductility and hysteretic behaviour of shear walls.


Inventions ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 72
Author(s):  
Ryota Sawaki ◽  
Daisuke Sato ◽  
Hiroko Nakayama ◽  
Yuki Nakagawa ◽  
Yasuhito Shimada

Background: Zebrafish are efficient animal models for conducting whole organism drug testing and toxicological evaluation of chemicals. They are frequently used for high-throughput screening owing to their high fecundity. Peripheral experimental equipment and analytical software are required for zebrafish screening, which need to be further developed. Machine learning has emerged as a powerful tool for large-scale image analysis and has been applied in zebrafish research as well. However, its use by individual researchers is restricted due to the cost and the procedure of machine learning for specific research purposes. Methods: We developed a simple and easy method for zebrafish image analysis, particularly fluorescent labelled ones, using the free machine learning program Google AutoML. We performed machine learning using vascular- and macrophage-Enhanced Green Fluorescent Protein (EGFP) fishes under normal and abnormal conditions (treated with anti-angiogenesis drugs or by wounding the caudal fin). Then, we tested the system using a new set of zebrafish images. Results: While machine learning can detect abnormalities in the fish in both strains with more than 95% accuracy, the learning procedure needs image pre-processing for the images of the macrophage-EGFP fishes. In addition, we developed a batch uploading software, ZF-ImageR, for Windows (.exe) and MacOS (.app) to enable high-throughput analysis using AutoML. Conclusions: We established a protocol to utilize conventional machine learning platforms for analyzing zebrafish phenotypes, which enables fluorescence-based, phenotype-driven zebrafish screening.


2010 ◽  
Vol 133-134 ◽  
pp. 715-720 ◽  
Author(s):  
Ilaria Senaldi ◽  
Guido Magenes ◽  
Andrea Penna

The work focuses on the analysis of the seismic response of masonry building aggregates for a better understanding of the vulnerability of single structural units and of their behaviour within the aggregates. Idealized representative models are developed based on the typical characteristics of the row conglomeration typology. The seismic response of the models is evaluated and discussed by means of nonlinear dynamic analyses.


2021 ◽  
Author(s):  
Antonio Sandoli ◽  
Gian Piero Lignola ◽  
Bruno Calderoni ◽  
Andrea Prota

Abstract A hybrid seismic fragility model for territorial-scale seismic vulnerability assessment of masonry buildings is developed and presented in this paper. The method combines expert-judgment and mechanical approaches to derive typological fragility curves for Italian residential masonry building stock. The first classifies Italian masonry buildings in five different typological classes as function of age of construction, structural typology, and seismic behaviour and damaging of buildings observed following the most severe earthquakes occurred in Italy. The second, based on numerical analyses results conducted on building prototypes, provides all the parameters necessary for developing fragility functions.Peak-Ground Acceleration (PGA) at Ultimate Limit State attainable by each building’s class has been chosen as an Intensity Measure (IM) to represent fragility curves: three types of curve have been developed, each referred to mean, maximum and minim value of PGAs defined for each buildings class.To represent the expected damage scenario for increasing earthquake intensities, a correlation between PGAs and Mercalli-Cancani-Sieber (MCS) macroseismic intensity scale has been used and the corresponding fragility curves developed.Results show that the proposed building’s classes are representative of the Italian masonry building stock and that fragility curves are effective for predicting both seismic vulnerability and expected damage scenarios for seismic-prone areas. Finally, the fragility curves have been compared with empirical curves obtained through a macroseismic approach on Italian masonry buildings available in literature, underlining the differences between the methods.


Sign in / Sign up

Export Citation Format

Share Document