Swarm size and iteration number effects to the performance of PSO algorithm in RFID tag coverage optimization

2017 ◽  
Author(s):  
M. Prathabrao ◽  
Azli Nawawi ◽  
Noor Azizah Sidek
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2868
Author(s):  
Gong Cheng ◽  
Huangfu Wei

With the transition of the mobile communication networks, the network goal of the Internet of everything further promotes the development of the Internet of Things (IoT) and Wireless Sensor Networks (WSNs). Since the directional sensor has the performance advantage of long-term regional monitoring, how to realize coverage optimization of Directional Sensor Networks (DSNs) becomes more important. The coverage optimization of DSNs is usually solved for one of the variables such as sensor azimuth, sensing radius, and time schedule. To reduce the computational complexity, we propose an optimization coverage scheme with a boundary constraint of eliminating redundancy for DSNs. Combined with Particle Swarm Optimization (PSO) algorithm, a Virtual Angle Boundary-aware Particle Swarm Optimization (VAB-PSO) is designed to reduce the computational burden of optimization problems effectively. The VAB-PSO algorithm generates the boundary constraint position between the sensors according to the relationship among the angles of different sensors, thus obtaining the boundary of particle search and restricting the search space of the algorithm. Meanwhile, different particles search in complementary space to improve the overall efficiency. Experimental results show that the proposed algorithm with a boundary constraint can effectively improve the coverage and convergence speed of the algorithm.


2011 ◽  
Vol 148-149 ◽  
pp. 868-874
Author(s):  
Huan Yang Zheng

An improved particle swarm optimization (PSO) algorithm is designed for the grid based wireless homo-sensor network position problem. The proposed method, called guided method, introduces the simulation of migration process to PSO and its mutation algorithm, using a previous designed sparse position plan to guide the swarm to the optimization solution, and accelerates the search process. Experiments show not only the feasibility and validity of the proposed method but also a marked improvement in performance over traditional PSO.


2013 ◽  
Vol 846-847 ◽  
pp. 914-917
Author(s):  
Su Fen Yao ◽  
Jian Qiang Zhao

A strategy for controlling mobile nodes based on PSO algorithm with neighborhood disturbance was proposed for improving the network coverage rate in wireless sensor networks. The non-dominated sorting strategy was led into basic PSO algorithm to seek best particle and adaptive neighborhood disturbance operation was used to conquer the drawback of PSO falling into local optimum. Therefore, the effect of network coverage had been improved and the network energy consumption can be reduced.


2019 ◽  
Vol 9 (2) ◽  
pp. 193-201
Author(s):  
Shahla A. Abdulqader ◽  
Hasmek A. Krekorian

In recent years, the gait recognition (GR) using particle swarm optimization (PSO) algorithm (OSO) has been execute very fast and accurate with single computer, but with the appearance of parallel computing (PC), it was necessary to use this technique to improve the results of GR. This study presents the use of parallel computing approaches (PCA) to implement PSO for a GR system (GRS) to decrease processing while maintaining reconstructed image quality. These approaches are: Codistributor and parallel cluster. Many experiments have been executed with recognition between the two approaches. The experimental results showed that increasing the PSO swarm size, decreasing number of iterations, and increasing number of workers used for the PCA can reduce recognition time and increase performance. Best results were obtained from implementing parallel computing with eight workers and 100 iterations. The execution time reached 4s and PSNR reached 44db. At the same time, the best results were obtained from PCL approach.


2015 ◽  
Vol 6 (4) ◽  
pp. 171-184
Author(s):  
Liangbo Xie ◽  
Jiaxin Liu ◽  
Yao Wang ◽  
Chuan Yin ◽  
Guangjun Wen

2010 ◽  
Vol E93-C (6) ◽  
pp. 785-795
Author(s):  
Sung-Jin KIM ◽  
Minchang CHO ◽  
SeongHwan CHO
Keyword(s):  
Rfid Tag ◽  

Sign in / Sign up

Export Citation Format

Share Document