Welding parameter optimization of alloy material by friction stir welding using Taguchi approach and design of experiments

2018 ◽  
Author(s):  
Amit H. Karwande ◽  
Seeram Srinivasa Rao
2018 ◽  
Vol 99 (1-4) ◽  
pp. 127-136 ◽  
Author(s):  
Shayan Eslami ◽  
J. Francisco Miranda ◽  
Luis Mourão ◽  
Paulo J. Tavares ◽  
P. M. G. P. Moreira

2007 ◽  
Vol 561-565 ◽  
pp. 1059-1062 ◽  
Author(s):  
H. Takahara ◽  
Masato Tsujikawa ◽  
Sung Wook Chung ◽  
Y. Okawa ◽  
Kenji Higashi

The influence of tool control in non-linear friction stir welding (FSW) on mechanical properties of joints was investigated. FSW is widely applied to linear joints. It is impossible for five axis FSW machines, however, to keep all the FSW parameters in optimum conditions at non-linear welding. Non-linear FSW joints should be made by compromise with the order of priority for FSW parameters. The tensile test results of butt joints with rectangular change in welding direction on plate plane (L-shaped butt joints) with various welding parameter change. It was found that turn to the retreating side is encouraged when welding direction change. And the method of zero inclination tool angle is effective at non-linear and plane welding.


2022 ◽  
Vol 1049 ◽  
pp. 39-44
Author(s):  
Andrey Chumaevskii ◽  
Denis Gurianov ◽  
Anastasiya Gusarova ◽  
Anna Zykova ◽  
Aleksandr Panfilov ◽  
...  

Model research tests of plastic deformation, fragmentation and flow of aluminum alloy material of Al-Mg-Sc-Zr system under high loaded friction in pair with a steel counterbody of a complex shape and comparison of the obtained result with the structure formed by friction stir welding have been carried out. The conducted studies show that the structure formed by extrusion of the material from the friction zone and its compaction in the channel of the counterbody is, in general, close in structure to the structure formed by friction stir welding of similar material. The distinguishing features of the structure formed in the model experiments on friction include the introduction into the stirring zone of material with deformed large-crystal structure, increased grain size of the stirring zone, the presence of defects and differences in the geometry of the stirring zone.


2010 ◽  
Vol 6 ◽  
pp. 07003 ◽  
Author(s):  
M.A. Rezgui ◽  
M. Ayadi ◽  
A. Cherouat ◽  
K. Hamrouni ◽  
A. Zghal ◽  
...  

Author(s):  
R Palanivel ◽  
RF Laubscher ◽  
S Vigneshwaran ◽  
I Dinaharan

Friction stir welding is a solid-state welding technique for joining metals such as aluminum alloys quickly and reliably. This article presents a design of experiments approach (central composite face–centered factorial design) for predicting and optimizing the process parameters of dissimilar friction stir welded AA6351–AA5083. Three weld parameters that influence weld quality were considered, namely, tool shoulder profile (flat grooved, partial impeller and full impeller), rotational speed and welding speed. Experimental results detailing the variation of the ultimate tensile strength as a function of the friction stir welding process parameters are presented and analyzed. An empirical model that relates the friction stir welding process parameters and the ultimate tensile strength was obtained by utilizing a design of experiments technique. The models developed were validated by an analysis of variance. In general, the full impeller shoulder profile displayed the best mechanical properties when compared to the other profiles. Electron backscatter diffraction maps were used to correlate the metallurgical properties of the dissimilar joints with the joint mechanical properties as obtained experimentally and subsequently modeled. The optimal friction stir welding process parameters, to maximize ultimate tensile strength, are identified and reported.


Sign in / Sign up

Export Citation Format

Share Document