scholarly journals Numerical study on seismic behaviour of reinforced concrete structures with steel brace and infill wall

2018 ◽  
Author(s):  
Ida Ayu Made Budiwati ◽  
Made Sukrawa ◽  
Ida Wahyuni
Structures ◽  
2021 ◽  
Vol 30 ◽  
pp. 134-145
Author(s):  
Sandeep Das ◽  
Subhrajit Dutta ◽  
Dibyendu Adak ◽  
Shubhankar Majumdar

2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
André Furtado ◽  
Maria Teresa de Risi

The extension of the damages observed after the last major earthquakes shows that the seismic risk mitigation of infilled reinforced concrete structures is a paramount topic in seismic prone regions. In the assessment of existing structures and the design of new ones, the infill walls are considered as nonstructural elements by most of the seismic codes and, generally, comprehensive provisions for practitioners are missing. However, nowadays, it is well recognized by the community the importance of the infills in the seismic behaviour of the reinforced concrete structures. Accurate modelling strategies and appropriate seismic assessment methodologies are crucial to understand the behaviour of existing buildings and to develop efficient and appropriate mitigation measures to prevent high level of damages, casualties, and economic losses. The development of effective strengthening solutions to improve the infill seismic behaviour and proper analytical formulations that could help design engineers are still open issues, among others, on this topic. The main aim of this paper is to provide a state-of-the-art review concerning the typologies of damages observed in the last earthquakes where the causes and possible solutions are discussed. After that, a review of in-plane and out-of-plane testing campaigns from the literature on infilled reinforced concrete frames are presented as well as their relevant findings. The most common strengthening solutions to improve the seismic behaviour are presented, and some examples are discussed. Finally, a brief summary of the modelling strategies available in the literature is presented.


2019 ◽  
Vol 12 (1) ◽  
pp. 39-68
Author(s):  
T. D. L.VASCONCELOS ◽  
V. G. HAACH

Abstract Sometimes straight bar splicing takes up too much space in a reinforced concrete structure due to the required overlapping length. Therefore, in limited space situations, loop joints may be a good solution, which has been spread in civil construction, although there are very few studies about it. The aim of the present work is to study the loop joint behavior in reinforced concrete structures under tension. Three dimensional numerical simulations are made using the software DIANA®. Firstly, the calibration of the numerical model based on experimental tests of the literature is performed, followed by parametric analyses varying geometric parameters of the concrete elements and reinforcement. The results indicate that arranging the bars as close as possible to a maximum spacing of 60 mm between axes and considering a minimum splice length equal to the bend diameter of the loops may be an ideal situation for the behavior of this type of connection.


2021 ◽  
pp. 102789
Author(s):  
Eliass El Alami ◽  
Fatima-Ezzahra Fekak ◽  
Luigi Garibaldi ◽  
Ahmed Elkhalfi

Currently, prefabricated reinforced concrete structures are widely used for the construction of buildings of various functional purposes. In this regard, has been developed SP 356.1325800.2017 "Frame Reinforced Concrete Prefabricated Structures of Multi-Storey Buildings. Design Rules", which establishes requirements for the calculation and design of precast reinforced concrete structures of frame buildings of heavy, fine-grained and lightweight structural concrete for buildings with a height of not more than 75 m. The structure of the set of rules consists of eight sections and one annex. The document reviewed covers the design of multi-story framed beam structural systems, the elements of which are connected in a spatial system with rigid (partially compliant) or hinged joints and concreting of the joints between the surfaces of the abutting precast elements. The classification of structural schemes of building frames, which according to the method of accommodation of horizontal loads are divided into bracing, rigid frame bracing and framework, is presented. The list of structural elements, such as foundations, columns, crossbars, ribbed and hollow floor slabs and coatings, stiffness elements and external enclosing structures is given; detailed instructions for their design are provided. The scope of the developed set of rules includes all natural and climatic zones of the Russian Federation, except seismic areas with 7 or more points, as well as permafrost zones.


Problems when calculating reinforced concrete structures based on the concrete deformation under compression diagram, which is presented both in Russian and foreign regulatory documents on the design of concrete and reinforced concrete structures are considered. The correctness of their compliance for all classes of concrete remains very approximate, especially a significant difference occurs when using Euronorm due to the different shape and sizes of the samples. At present, there are no methodical recommendations for determining the ultimate relative deformations of concrete under axial compression and the construction of curvilinear deformation diagrams, which leads to limited experimental data and, as a result, does not make it possible to enter more detailed ultimate strain values into domestic standards. The results of experimental studies to determine the ultimate relative deformations of concrete under compression for different classes of concrete, which allowed to make analytical dependences for the evaluation of the ultimate relative deformations and description of curvilinear deformation diagrams, are presented. The article discusses various options for using the deformation model to assess the stress-strain state of the structure, it is concluded that it is necessary to use not only the finite values of the ultimate deformations, but also their intermediate values. This requires reliable diagrams "s–e” for all classes of concrete. The difficulties of measuring deformations in concrete subjected to peak load, corresponding to the prismatic strength, as well as main cracks that appeared under conditions of long-term step loading are highlighted. Variants of more accurate measurements are proposed. Development and implementation of the new standard GOST "Concretes. Methods for determination of complete diagrams" on the basis of the developed method for obtaining complete diagrams of concrete deformation under compression for the evaluation of ultimate deformability of concrete under compression are necessary.


Sign in / Sign up

Export Citation Format

Share Document