scholarly journals A one-dimensional axisymmetric model for time-varying electromagnetic mitigation of plasma for alleviation of radio communication blackout

AIP Advances ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 085020
Author(s):  
Donglin Liu ◽  
Xiaoping Li ◽  
Yanming Liu ◽  
Jiahao Xu ◽  
Fan Lei ◽  
...  
2021 ◽  
Vol 5 (1) ◽  
pp. 147-161
Author(s):  
Soh Edwin Mukiawa ◽  

In the present work, we study the effect of time varying delay damping on the stability of a one-dimensional porous-viscoelastic system. We also illustrate our findings with some examples. The present work improve and generalize existing results in the literature.


1990 ◽  
Vol 22 (01) ◽  
pp. 101-110
Author(s):  
L. Sacerdote

Use of one-parameter group transformations is made to obtain the transition p.d.f. of a Feller process confined between the origin and a hyperbolic-type boundary. Such a procedure, previously used by Bluman and Cole (cf., for instance, [4]), although useful for dealing with one-dimensional diffusion processes restricted between time-varying boundaries, does not appear to have been sufficiently exploited to obtain solutions to the diffusion equations associated to continuous Markov processes.


Author(s):  
S. C. Olhede

Modulated oscillations are described via their time-varying amplitude and frequency. For multivariate signals, there is structure in the signal beyond this local amplitude and frequency defined for each signal component, in turn describing the commonality of the components. The multivariate structure encodes how the common oscillation is present in each component signal. This structure will also be evolving. I review the special case of the representation of both bivariate and trivariate oscillations. Additionally, existing results on the general multivariate oscillation are covered. I discuss the difference between a model of a multivariate oscillation compared with other common signal models of phenomena observed in several channels, and how their properties are different. I show how for the multivariate signal the global dimensionality of the signal is built up from local one-dimensional contributions, and introduce the purely unidirectional signal, to quantify how any given signal is different from the closest such signal. I illustrate the properties of the derived representation of the multivariate signal with synthetic examples, and discuss the representation of data from observations in physical oceanography.


Author(s):  
Katherine A. Kime

We consider control of the one-dimensional Schroedinger equation through a time-varying potential. Using a finite difference semi-discretization, we consider increasing the extent of the potential from a single central grid-point in space to two or more gridpoints. With the differential geometry package in Maple 8, we compute and compare the corresponding Control Lie Algebras, identifying a trend in the number of elements which span the Control Lie Algebras.


Sign in / Sign up

Export Citation Format

Share Document