The effect of sisal fiber content in the biocomposite product from injection molding process on its mechanical properties

2018 ◽  
Author(s):  
Dinny Harnany ◽  
I. Made Londen Batan ◽  
Rahmat Basya S. T. ◽  
M. Arif Wisnu A.
2012 ◽  
Vol 532-533 ◽  
pp. 234-237
Author(s):  
Wei Lai Chen ◽  
Ding Hong Yi ◽  
Jian Fu Zhang

The purpose of this paper is to study the effect of high temperature in injection molding process on mechanical properties of the warp-knitted and nonwoven composite fabrics (WNC)used in car interior. Tensile, tearing and peeling properties of WNC fabrics were tested after heat treatment under120, 140,160,180°C respectively. It was found that, after 140°C heat treatment, the breaking and tearing value of these WNC fabrics are lower than others. The results of this study show that this phenomenon is due to the material properties of fabrics. These high temperatures have no much effect on peeling properties of these WNC fabrics. It is concluded that in order to preserve the mechanical properties of these WNC fabrics, the temperature near 140°C should be avoided possibly during injection molding process.


2017 ◽  
Vol 69 (3) ◽  
pp. 414-419
Author(s):  
Mimi Azlina Abu Bakar ◽  
Siti Norazlini Abd Aziz ◽  
Muhammad Hussain Ismail

Purpose This paper aims to investigate the vital characteristic of an innovative ceramic injection molding (CIM) process for orthopedic application with controlled porosity and improved tribological and mechanical properties which were affected by complex tribological interactions, whether lubricated like hip implants and other artificial prostheses. The main objective is to maximize the usage of palm stearin as a single based binder as the function of flow properties during injection molding process. Design/methodology/approach The binder used in this present study consists of 100 per cent palm stearin manufactured by Kempas Oil Sdn Bhd and supplied by Vistec Technology Sdn Bhd. The feedstock was prepared by using a Z-blade mixer (Thermo Haake Rheomix OS) and Brabender mixer model R2400. The feedstock prepared was injection molded using a manually operated vertical benchtop machine with an average pressure of about 5-7 bars. The firing step included the temporary holds at intermediate temperatures to burn out organic binders. At this stage, the green molded specimen was de-bound using a single-step wick-debinding method. Findings The maximum content of ceramic material is applied to investigate the efficiencies of net formulation that can be achieved by ceramic materials. The longer the viscosity will change with shear rate, the higher the value of n obtained instead. From the slope of the curves obtained in Figure 3, the value of n for the feedstock was determined to be less than 1, which indicates a pseudoplastic behavior and suitability for the molding process. Moreover, high shear sensitivity is important in producing complex and intrinsic specimens which are leading products in the CIM industry. Originality/value The feedstock containing HAp powder and palm stearin binder was successfully prepared at very low temperature of 70°C, which promoting a required pseudo-plastic behavior during rheological test. The single binder palm stearin should be optimized in other research works carried out, as palm stearin is most preferred compared to other polymeric materials that provided high energy consumption when subjected to the sintering process. Besides the binder is widely available in Malaysia, low cost and harmless effect during debinding process.


2012 ◽  
Vol 602-604 ◽  
pp. 627-630 ◽  
Author(s):  
Kyu Sik Kim ◽  
Kee Ahn Lee ◽  
Jong Ha Kim ◽  
Si Woo Park ◽  
Kyu Sang Cho

Inconel 713C alloy was tried to manufacture by using MIM(Metal Injection Molding) process. The high-temperature mechanical properties of MIMed Inconel 713C were also investigated. Processing defects such as pores and binders could be observed near the surface. Tensile tests were conducted from room temperature to 900°C. The result of tensile tests showed that this alloy had similar or somewhat higher strengths (YS: 734 MPa, UTS: 968 MPa, elongation: 7.16 % at room temperature) from RT to 700°C than those of conventional Inconel 713C alloys. Above 800°C, however, ultimate tensile strength decreased rapidly with increasing temperature (lower than casted Inconel 713C). Based on the observation of fractography, initial crack was found to have started near the surface defects and propagated rapidly. The superior mechanical properties of MIMed Inconel 713C could be obtained by optimizing the MIM process parameters.


2018 ◽  
Vol 37 (15) ◽  
pp. 1020-1034 ◽  
Author(s):  
Christoph Lohr ◽  
Björn Beck ◽  
Frank Henning ◽  
Kay André Weidenmann ◽  
Peter Elsner

The MuCell process is a special injection molding process which utilizes supercritical gas (nitrogen) to create integral foam sandwiches. The advantages are lower weight, higher specific properties and shorter cycle times. In this study, a series of glass fiber-reinforced polyphenylene sulfide foam blanks are manufactured using the MuCell injection molding process. The different variations of the process (low-pressure also known as structural foam injection molding) and high-pressure foam injection molding (also known as “core back expansion,” “breathing mold,” “precision opening,” decompression molding) are used. The sandwich structure and mechanical properties (tensile strength, bending strength, and impact behavior) of the microcellular and glass fiber-reinforced polyphenylene sulfide foams are systematically investigated and compared to compact material. The results showed that the injection parameters (injection speed, foaming mechanism) played an important role in the relative density of microcellular polyphenylene sulfide foams and the mechanical properties. It could be shown that the specific tensile strength decreased while increasing the degree of foaming which can be explained by the increased number of cells and the resulting cell size. This leads to stress peaks which lower the mechanical properties. The Charpy impact strength shows a significant dependence on the fiber orientation. The specific bending modulus of the high-pressure foaming process, however, surpasses the values of the other two processes showing the potential of this manufacturing variation especially with regard to bending loads. Furthermore, a high dependence of the mechanical properties on the fiber orientation of the tested specimens can be found.


2013 ◽  
Vol 315 ◽  
pp. 582-586 ◽  
Author(s):  
Nasuha Sa'ude ◽  
M. Ibrahim ◽  
Wahab Saidin

This paper presents the development of a new polymer matrix composite (PMC) feedstock material by the injection molding machine. The material consists of iron powder filled in an acrylonitrile butadiene styrene (ABS) and surfactant powder (binder) material. In this study, the effect of powder loading and binder content on the mechanical properties was investigated experimentally. The detailed formulations of compounding ratio by Brabender Mixer and injection molding machine of the sample specimen was used with various combinations of the new PMC material. Based on the result obtained, it was found that, higher powder loading of iron filler affected the hardness, tensile and flexural strength of PMC material. With 32% iron powder loading in ABS composites increase the flexural force, maximum stress and force of PMC material through an injection molding process.


Sign in / Sign up

Export Citation Format

Share Document