Fluidic injectors for supersonic jet control

2018 ◽  
Vol 30 (12) ◽  
pp. 126101 ◽  
Author(s):  
P. Arun Kumar ◽  
S. M. Aravindh Kumar ◽  
A. Surya Mitra ◽  
E. Rathakrishnan
Keyword(s):  
AIAA Journal ◽  
1993 ◽  
Vol 31 (7) ◽  
pp. 1340-1341 ◽  
Author(s):  
D. P. Wishart ◽  
A. Krothapalli ◽  
M. G. Mungal
Keyword(s):  

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
G. Ezhilmaran ◽  
Suresh Chandra Khandai ◽  
Yogesh Kumar Sinha ◽  
S. Thanigaiarasu

Abstract This paper presents the numerical simulation of Mach 1.5 supersonic jet with perforated tabs. The jet with straight perforation tab was compared with jets having slanted perforated tabs of different diameters. The perforation angles were kept as 0° and 10° with respect to the axis of the nozzle. The blockage areas of the tabs were 4.9 %, 4.9 % and 2.4 % for straight perforation, 10° slanted perforation ( {{{\Phi }}_{\ }} = 1.3 mm) and 10° slanted perforation ( {{{\Phi }}_{\ }} = 1.65 mm) respectively. The 3-D numerical simulations were carried out using the software. The mixing enhancements caused by these tabs were studied in the presence of adverse and favourable pressure gradients, corresponding to nozzle pressure ratio (NPR) of 3, 3.7 and 5. For Mach number 1.5 jet, NPR 3 corresponds to 18.92 % adverse pressure gradients and NPR 5 corresponds to 35.13 % favourable pressure gradients. The centerline Mach number of the jet with slanted perforations is found to decay at a faster rate than uncontrolled nozzle and jet with straight perforation tab. Mach number plots were obtained at both near-field and far field downstream locations. There is 25 % and 65 % reduction in jet core length were observed for the 0° and 10° perforated tabs respectively in comparison to uncontrolled jet.


2019 ◽  
Vol 31 (5) ◽  
pp. 056107 ◽  
Author(s):  
P. Arun Kumar ◽  
S. M. Aravindh Kumar ◽  
A. Surya Mitra ◽  
E. Rathakrishnan

2013 ◽  
Vol 29 (1) ◽  
pp. 50-65 ◽  
Author(s):  
P. Arun Kumar ◽  
E. Rathakrishnan
Keyword(s):  

2013 ◽  
Vol 135 (9) ◽  
Author(s):  
P. Arun Kumar ◽  
E. Rathakrishnan

An experimental investigation has been carried out to assess the effectiveness of truncated triangular tabs, provided with corrugations (semicircular, triangle, and square shapes) all along their edges, capable of shedding small-scale vortices of continuously varying size, in enhancing the mixing of axi-symmetric Mach 2 jet, at different levels of expansion. The performance of all the tabs were found to be effective only in the near-field of the jet at all levels of expansion of the present investigation. Both the semicircular and square corrugated tabs were found to bifurcate the jet, in two parts (lobes), at x/D ≤ 1, than the triangular corrugated tab, at all the nozzle pressure ratios (NPRs) of the present study. Among the controlled jets, the semicircular corrugated tab is found to be the best mixing promoter at NPRs 6 and 7, for the Mach 2 jet. However at NPRs 4, 5 and 8, the mixing promoting performance of uncorrugated tabs is the best; as high as 91% reduction in jet core length is achieved with semicircular corrugations. Therefore, the mixing promoting capability of truncated triangular tabs with semicircular corrugated tab assumes a maximum, around the overexpansion level with adverse pressure gradient of around 10% (corresponding to NPR7). Shadowgraph images reveal, that the waves prevailing in the near-field for the controlled jets are rendered weaker than those of uncontrolled jet.


Sign in / Sign up

Export Citation Format

Share Document