scholarly journals X-ray reflectivity with a twist: Quantitative time-resolved X-ray reflectivity using monochromatic synchrotron radiation

2019 ◽  
Vol 114 (8) ◽  
pp. 081904 ◽  
Author(s):  
Howie Joress ◽  
Shane Q. Arlington ◽  
Timothy P. Weihs ◽  
Joel D. Brock ◽  
Arthur R. Woll
2018 ◽  
Vol 25 (3) ◽  
pp. 706-716 ◽  
Author(s):  
H. Joress ◽  
J. D. Brock ◽  
A. R. Woll

A new technique for the parallel collection of X-ray reflectivity (XRR) data, compatible with monochromatic synchrotron radiation and flat substrates, is described and applied to thein situobservation of thin-film growth. The method employs a polycapillary X-ray optic to produce a converging fan of radiation, incident onto a sample surface, and an area detector to simultaneously collect the XRR signal over an angular range matching that of the incident fan. Factors determining the range and instrumental resolution of the technique in reciprocal space, in addition to the signal-to-background ratio, are described in detail. This particular implementation records ∼5° in 2θ and resolves Kiessig fringes from samples with layer thicknesses ranging from 3 to 76 nm. The value of this approach is illustrated by showingin situXRR data obtained with 100 ms time resolution during the growth of epitaxial La0.7Sr0.3MnO3on SrTiO3by pulsed laser deposition at the Cornell High Energy Synchrotron Source (CHESS). Compared with prior methods for parallel XRR data collection, this is the first method that is both sample-independent and compatible with the highly collimated, monochromatic radiation typical of third-generation synchrotron sources. Further, this technique can be readily adapted for use with laboratory-based sources.


1999 ◽  
Vol 32 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Naoki Sasaki ◽  
Norifumi Shukunami ◽  
Norio Matsushima ◽  
Yoshinobu Izumi

2015 ◽  
Vol 119 (23) ◽  
pp. 12910-12915 ◽  
Author(s):  
Chi-Yuan Lin ◽  
Cheng-En Cheng ◽  
Shuai Wang ◽  
Hung Wei Shiu ◽  
Lo Yueh Chang ◽  
...  

1992 ◽  
Vol 263 (6) ◽  
pp. H1946-H1957 ◽  
Author(s):  
H. Mori ◽  
S. Haruyama ◽  
Y. Shinozaki ◽  
H. Okino ◽  
A. Iida ◽  
...  

We developed new nonradioactive microspheres and used more sensitive X-ray fluorescence spectrometers than used previously to measure regional blood flow in the heart and other organs. We demonstrated the chemical stability of eight kinds of heavy element-loaded microspheres and validated their use for regional blood flow measurement by comparing duplicate flows measured with radioactive and/or nonradioactive microspheres in both acute and chronic dog experiments. The wavelength-dispersive spectrometer (Philips PW 1480) has a higher sensitivity than the previously described X-ray fluorescent system and reduced the number of microspheres required for accurate measurement. The fine energy resolution of this system makes it possible to increase the numbers of different kinds of microspheres to be quantitated, but at present only eight kinds are available. We also used a synchrotron radiation-excited energy dispersive spectrometer. The monochromatic synchrotron radiation allowed us to obtain much higher signal-to-background ratios of X-ray fluorescence spectra than with the wavelength-dispersive system (50 dB more for Zr-loaded microspheres) and will enable analysis of fluorescent activity in smaller regions (< 20 mg) than the radioactive method does.


1994 ◽  
Vol 04 (C9) ◽  
pp. C9-195-C9-198
Author(s):  
W. Fuller ◽  
A. Mahendrasingam ◽  
A. Jaber ◽  
C. Martin ◽  
D. Hughes ◽  
...  

IUCrJ ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 412-425 ◽  
Author(s):  
Jose M. Martin-Garcia ◽  
Lan Zhu ◽  
Derek Mendez ◽  
Ming-Yue Lee ◽  
Eugene Chun ◽  
...  

Since the first successful serial crystallography (SX) experiment at a synchrotron radiation source, the popularity of this approach has continued to grow showing that third-generation synchrotrons can be viable alternatives to scarce X-ray free-electron laser sources. Synchrotron radiation flux may be increased ∼100 times by a moderate increase in the bandwidth (`pink beam' conditions) at some cost to data analysis complexity. Here, we report the first high-viscosity injector-based pink-beam SX experiments. The structures of proteinase K (PK) and A2A adenosine receptor (A2AAR) were determined to resolutions of 1.8 and 4.2 Å using 4 and 24 consecutive 100 ps X-ray pulse exposures, respectively. Strong PK data were processed using existing Laue approaches, while weaker A2AAR data required an alternative data-processing strategy. This demonstration of the feasibility presents new opportunities for time-resolved experiments with microcrystals to study structural changes in real time at pink-beam synchrotron beamlines worldwide.


Sign in / Sign up

Export Citation Format

Share Document