Effect of transmission switching and short circuit on the transient stability at interconnected power system: A case study of 150 kV Mahakam East Kalimantan electrical power system

2019 ◽  
Author(s):  
Chico Hermanu ◽  
Edi Nugroho ◽  
Irwan Iftadi
2020 ◽  
Vol 7 (08) ◽  
pp. 268-273
Author(s):  
Raheemullah Khan ◽  
◽  
Jehan Parvez ◽  
Abdur Rehman ◽  
Muhammad Ibrahim ◽  
...  

Author(s):  
Ricardo Menezes Salgado ◽  
Takaaki Ohishi ◽  
Rosangela Ballini

The main objective of this chapter is to present a hybrid model for bus load forecasting. This approach represents an essential tool for the operation of the electrical power system and the hybrid model combines a bus clustering process and a load forecasting model. As a case study, the model was applied to the real Brazilian electrical system, and the results revealed a performance similar to that of conventional models for bus load forecasting, but about 14 times faster. The results are compatible with the safe operating load levels for the Brazilian electrical power system and have proved to be adequate for use in real operation tasks.


2015 ◽  
Vol 793 ◽  
pp. 65-69 ◽  
Author(s):  
Abadal Salam T. Hussain ◽  
Waleed A. Oraibi ◽  
Fadhel A. Jumaa ◽  
F. Malek ◽  
Syed F. Ahmed ◽  
...  

Electrical Power System protection is required to protectboth the user and the system equipment itself fromany fault, hence electrical power system is not allowed to operate without any protection devices installed. Power System fault is defined as the undesirable condition that occurs in the power system. Some of these undesirable conditions are short circuit, current leakage, ground faultand over-under voltage. With the increasing loads, voltages and short-circuit duty in power plant, over voltage protection has become more important today. Here, the component that had been used is PIC 16F877a microcontroller to control the whole system and especially on the circuit breakers as well as the LCT display unit is used to display the voltage level and type of generator that used to serve the load. Sensors are used to measure both thevoltage and the load. The controlled digital signal from PIC microcontroller is converted by using the digital analog converter to control the whole circuit. Thus a device called protective relay is created to meet this requirement. The protective relay is mostlyoften coupled with circuit breaker in a way that it can isolate the abnormal condition in the system.


Author(s):  
Pasala Gopi ◽  
P. Linga Reddy

The response of the load frequency control problem in multi-area interconnected electrical power system is much more complex with increasing size, changing structure and increasing load.  This paper deals with Load Frequency Control of three area interconnected Power system incorporating Reheat, Non-reheat and Reheat turbines in all areas respectively.  The response of the load frequency control problem in a multi-area interconnected power system is improved by designing PID controller using different tuning techniques and proved that the PID controller which was designed by Simulink Design Optimization (SDO) Software gives the superior performance than other controllers for step perturbations. Finally the robustness of controller was checked against system parameter variations..


Author(s):  
Ashutosh Srivastava ◽  
Amarjeet Singh

Harmonics in the power system is not new issue. This phenomenon has been introduced by technocrat throughout in the history of electrical power system. Maintaining the power quality in a power system is an essential assignment due to increase in wide variety of non-linear loads. The current drawn by such non linear loads are non-sinusoidal and therefore contains harmonics. Therefore, it becomes necessary to compensate these unwanted harmonics for better performance of the system. In this paper, a review of compensations of harmonics in distribution system has been explained.


2020 ◽  
Vol 5 (6) ◽  
pp. 665-674
Author(s):  
Kemei Peter Kirui ◽  
David K. Murage ◽  
Peter K. Kihato

The ever increasing global demand on the electrical energy has lead to the integration of Distributed Generators (DGs) onto the distribution power systems networks to supplement on the deficiencies on the electrical energy generation capacities. The high penetration levels of DGs on the electrical distribution networks experienced over the past decade calls for the grid operators to periodically and critically asses the impacts brought by the DGs on the distribution network operations. The assessment on the impacts brought by the DGs on the distribution network operations is done by simulating the dynamic response of the network to major disturbances occurring on the network like the faults once the DGs have been connected into it. Connection of Wind Turbine Generators (WTGs) into a conventional electrical energy distribution network has great impacts on the short circuit current levels experienced during a fault and also on the protective devices used in protecting the distribution network equipment namely; the transformers, the overhead distribution lines, the underground cables and the line compensators and the shunt capacitors commonly used/found on the relatively long rural distribution feeders. The main factors which contribute to the impacts brought by the WTGs integration onto a conventional distribution network are: The location of interconnecting the WTG/s into the distribution feeder; The size/s of the WTG/s in terms of their electrical wattage penetrating the distribution network; And the type of the WTG interfacing technology used labeled/classified as, Type I, Type II, Type III and Type IV WTGs. Even though transformers are the simplest and the most reliable devices in an electrical power system, transformer failures can occur due to internal or external conditions that make the transformer incapable of performing its proper functions. Appropriate transformer protection should be used with the objectives of protecting the electrical power system in case of a transformer failure and also to protect the transformer itself from the power system disturbances like the faults. This paper was to investigate the effects of integrating WTGs on a distribution transformer Fuse-Fuse conventional protection coordination scheme. The radial distribution feeder studied was the IEEE 13 node radial test feeder and it was simulated using the Electrical Transient Analysis Program (ETAP) software for distribution transformer Fuse-Fuse protection coordination analysis. The IEEE 13 Node radial test feeder In-line transformer studied is a three-phase  step down transformer having a star solidly grounded primary winding supplied at  and a star solidly grounded secondary winding feeding power at a voltage of . The increase on the short circuit currents at the In-line transformer nodes due to the WTG integration continuously reduces the time coordination margins between the upstream fuse F633 and the downstream fuse F634 used to protect the transformer.


2020 ◽  
Vol 5 (2) ◽  
pp. 35-37
Author(s):  
Vipin Kumar Pandey ◽  
Dr. Malay S Das ◽  
Dr. Anula Khare

Due to increase in population and industrial growth, insufficient energy resources to generate or transmit the power in power system, increase in load causes power demand in the electrical power system. These power demand leads to voltage instability, increase the losses, reduces the power transfer capability and stability of the power system. To overcome this stability problem FACTS devices are optimally located in the power system to examine the stability of the system. To locate the FACTS devices different optimization algorithms are used in order to improve the stability of the electrical power system.


Sign in / Sign up

Export Citation Format

Share Document