Electrokinetic instability in microchannel viscoelastic fluid flows with conductivity gradients

2019 ◽  
Vol 31 (8) ◽  
pp. 082001 ◽  
Author(s):  
Purva Jagdale
2021 ◽  
Vol 36 (3) ◽  
pp. 165-176
Author(s):  
Kirill Nikitin ◽  
Yuri Vassilevski ◽  
Ruslan Yanbarisov

Abstract This work presents a new approach to modelling of free surface non-Newtonian (viscoplastic or viscoelastic) fluid flows on dynamically adapted octree grids. The numerical model is based on the implicit formulation and the staggered location of governing variables. We verify our model by comparing simulations with experimental and numerical results known from the literature.


Processes ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 210 ◽  
Author(s):  
Meng Zhang ◽  
Yunfeng Cui ◽  
Weihua Cai ◽  
Zhengwei Wu ◽  
Yongyao Li ◽  
...  

Fluid mixing plays an essential role in microscale flow systems. Here, we propose an active mixing approach which enhances the mixing of viscoelastic fluid flow in a simplified pore T-junction structure. Mixing is actively controlled by modulating the driving pressure with a sinusoidal signal at the two inlets of the T-junction. The mixing effect is numerically investigated for both Newtonian and viscoelastic fluid flows under different pressure modulation conditions. The result shows that a degree of mixing as high as 0.9 is achieved in viscoelastic fluid flows through the T-junction mixer when the phase difference between the modulated pressures at the two inlets is 180°. This modulation method can also be used in other fluid mixing devices.


2016 ◽  
Vol 236 ◽  
pp. 18-34 ◽  
Author(s):  
Wen Zhou ◽  
Jie Ouyang ◽  
Xiaodong Wang ◽  
Jin Su ◽  
Binxin Yang

Sign in / Sign up

Export Citation Format

Share Document