scholarly journals Evaluation of localized vertical current formation in carrier selective passivation layers of silicon solar cells by conductive AFM

Author(s):  
Susanne Richter ◽  
Yevgeniya Larionova ◽  
Stephan Großer ◽  
Matthias Menzel ◽  
Henning Schulte-Huxel ◽  
...  
2019 ◽  
Vol 11 (14) ◽  
pp. 3784
Author(s):  
Ji Yeon Hyun ◽  
Soohyun Bae ◽  
Yoon Chung Nam ◽  
Dongkyun Kang ◽  
Sang-Won Lee ◽  
...  

Al2O3/SiNx stack passivation layers are among the most popular layers used for commercial silicon solar cells. In particular, aluminum oxide has a high negative charge, while the SiNx film is known to supply hydrogen as well as impart antireflective properties. Although there are many experimental results that show that the passivation characteristics are lowered by using the stack passivation layer, the cause of the passivation is not yet understood. In this study, we investigated the passivation characteristics of Al2O3/SiNx stack layers. To identify the hydrogenation effect, we analyzed the hydrogen migration with atom probe tomography by comparing the pre-annealing and post-annealing treatments. For chemical passivation, capacitance-voltage measurements were used to confirm the negative fixed charge density due to heat treatment. Moreover, the field-effect passivation was understood by confirming changes in the Al2O3 structure using electron energy-loss spectroscopy.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Abdullah Uzum ◽  
Hiroyuki Kanda ◽  
Takuma Noguchi ◽  
Yuya Nakazawa ◽  
Shota Taniwaki ◽  
...  

Aluminum acetylacetonate-based AlOx thin films were introduced as a low-cost, high-quality passivation layers for crystalline silicon solar cells. Films were formed by a spin coating method on p-type silicon substrates at 450°C in ambient air, O2, or water vapor (H2O/O2) for 15 or 120 min. XPS analysis confirms the AlOx formation and reveals a high intensity of interfacial SiOx at the AlOx/Si interface of processed wafers. Ambient H2O/O2 was found to be more beneficial for the activation of introduced AlOx passivation films which offers high lifetime improvements with a low thermal budget. Carrier lifetime measurements provides that symmetrically coated wafers reach 119.3 μs and 248.3 μs after annealing in ambient H2O/O2 for 15 min and 120 min, respectively.


2019 ◽  
Vol 27 (11) ◽  
pp. 1007-1019 ◽  
Author(s):  
Jean‐François Lelièvre ◽  
Bishal Kafle ◽  
Pierre Saint‐Cast ◽  
Paul Brunet ◽  
Romain Magnan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document