Upper bound estimates for local in time solutions to the semilinear heat equation on stratified lie groups in the sub-Fujita case

Author(s):  
Vladimir Georgiev ◽  
Alessandro Palmieri
Author(s):  
Lijuan Wang ◽  
Can Zhang

In this paper, we first prove a uniform upper bound on costs of null controls for semilinear heat equations with globally Lipschitz nonlinearity on a sequence of increasing domains, where the controls are acted on an equidistributed set that spreads out in the whole Euclidean space R N . As an application, we then show the exact null-controllability for this semilinear heat equation in R N . The main novelty here is that the upper bound on costs of null controls for such kind of equations in large but bounded domains can be made uniformly with respect to the sizes of domains under consideration. The latter is crucial when one uses a suitable approximation argument to derive the global null-controllability for the semilinear heat equation in R N . This allows us to overcome the well-known problem of the lack of compactness embedding arising in the study of null-controllability for nonlinear PDEs in generally unbounded domains.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 250
Author(s):  
Frédéric Barbaresco ◽  
Jean-Pierre Gazeau

For the 250th birthday of Joseph Fourier, born in 1768 at Auxerre in France, this MDPI special issue will explore modern topics related to Fourier analysis and Fourier Heat Equation. Fourier analysis, named after Joseph Fourier, addresses classically commutative harmonic analysis. The modern development of Fourier analysis during XXth century has explored the generalization of Fourier and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally compact non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups (by associating coherent states to group representations that are square integrable over a homogeneous space). The name of Joseph Fourier is also inseparable from the study of mathematics of heat. Modern research on Heat equation explores geometric extension of classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. The heat equation for a general volume form that not necessarily coincides with the Riemannian one is useful in sub-Riemannian geometry, where a canonical volume only exists in certain cases. A new geometric theory of heat is emerging by applying geometric mechanics tools extended for statistical mechanics, for example, the Lie groups thermodynamics.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Huiju Wang ◽  
Pengcheng Niu

AbstractIn this paper, we establish weighted higher order exponential type inequalities in the geodesic space {({X,d,\mu})} by proposing an abstract higher order Poincaré inequality. These are also new in the non-weighted case. As applications, we obtain a weighted Trudinger’s theorem in the geodesic setting and weighted higher order exponential type estimates for functions in Folland–Stein type Sobolev spaces defined on stratified Lie groups. A higher order exponential type inequality in a connected homogeneous space is also given.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Liu ◽  
Jianfeng Dong

Assume thatGis a stratified Lie group andQis the homogeneous dimension ofG. Let-Δbe the sub-Laplacian onGandW≢0a nonnegative potential belonging to certain reverse Hölder classBsfors≥Q/2. LetL=-Δ+Wbe a Schrödinger operator on the stratified Lie groupG. In this paper, we prove the boundedness of some integral operators related toL, such asL-1∇2,L-1W, andL-1(-Δ) on the spaceBMOL(G).


Sign in / Sign up

Export Citation Format

Share Document