Numerical study on the performance and flow field of varied conical basin for efficient gravitational water vortex power plant

2019 ◽  
Author(s):  
Didit Setyo Pamuji ◽  
Nizam Effendi ◽  
Daru Sugati
2006 ◽  
Vol 11 (4) ◽  
pp. 331-343 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Samad

The problem of combined free-forced convection and mass transfer flow over a vertical porous flat plate, in presence of heat generation and thermaldiffusion, is studied numerically. The non-linear partial differential equations and their boundary conditions, describing the problem under consideration, are transformed into a system of ordinary differential equations by using usual similarity transformations. This system is solved numerically by applying Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. The effects of suction parameter, heat generation parameter and Soret number are examined on the flow field of a hydrogen-air mixture as a non-chemical reacting fluid pair. The analysis of the obtained results showed that the flow field is significantly influenced by these parameters.


ACS Omega ◽  
2021 ◽  
Vol 6 (34) ◽  
pp. 21892-21899
Author(s):  
Yixiang Wang ◽  
Lei Wang ◽  
Xianhang Ji ◽  
Yulu Zhou ◽  
Mingge Wu

Author(s):  
Dian Li ◽  
Xiaomin Liu ◽  
Lei Wang ◽  
Fujia Hu ◽  
Guang Xi

Previous publications have summarized that three special morphological structures of owl wing could reduce aerodynamic noise under low Reynolds number flows effectively. However, the coupling noise-reduction mechanism of bionic airfoil with trailing-edge serrations is poorly understood. Furthermore, while the bionic airfoil extracted from natural owl wing shows remarkable noise-reduction characteristics, the shape of the owl-based airfoils reconstructed by different researchers has some differences, which leads to diversity in the potential noise-reduction mechanisms. In this article, three kinds of owl-based airfoils with trailing-edge serrations are investigated to reveal the potential noise-reduction mechanisms, and a clean airfoil based on barn owl is utilized as a reference to make a comparison. The instantaneous flow field and sound field around the three-dimensional serrated airfoils are simulated by using incompressible large eddy simulation coupled with the FW-H equation. The results of unsteady flow field show that the flow field of Owl B exhibits stronger and wider-scale turbulent velocity fluctuation than that of other airfoils, which may be the potential reason for the greater noise generation of Owl B. The scale and magnitude of alternating mean convective velocity distribution dominates the noise-reduction effect of trailing-edge serrations. The noise-reduction characteristic of Owl C outperforms that of Barn owl, which suggests that the trailing-edge serrations can suppress vortex shedding noise of flow field effectively. The trailing-edge serrations mainly suppress the low-frequency noise of the airfoil. The trailing-edge serration can suppress turbulent noise by weakening pressure fluctuation.


2011 ◽  
Vol 54 (9) ◽  
pp. 2475-2482 ◽  
Author(s):  
WanXi Zhang ◽  
LiJun Yang ◽  
XiaoZe Du ◽  
YongPing Yang

2013 ◽  
Vol 561 ◽  
pp. 614-619 ◽  
Author(s):  
Qing Ling Li ◽  
Xiao Qing Xie ◽  
Jun Chao ◽  
Xuan Xin ◽  
Yan Zhou

A numerical study with FLUENT software has been carried out as to air performance in the slope solar energy power plant. The velocity field, temperature and pressure fields in the solar chimney, and the simulated result were compared with the simulated result of traditional solar chimney power generating equipment. The simulation results show that distribution of the temperature field and the velocity field in slope solar energy power plant and traditional solar chimney power generating equipment. In the case of the same height, the velocity of traditional is slightly larger than the slope style's, but there is little difference. In order to achieve the same power generation effect, the overall height of slope style is more than the traditional style, but the vertical chimney height of traditional style is greater than the slope style. The cost of construction of vertical chimney is expensive, and many problems have been considered, like radix saposhnikoviae and earthquake prevention, the heat collector also need to be cleaned on time. The slope style can take full advantage of land, the height of vertical chimney will be reduced, so the construction of the chimney will be relatively easy. Rainwater can clean the heat collector when it runs down from it. All things considered. The slope solar energy power plant has more development prospects.


2012 ◽  
Vol 248 ◽  
pp. 391-394
Author(s):  
Wen Zhou Yan ◽  
Wan Li Zhao ◽  
Qiu Yan Li

By using the computational fluid dynamics code, FLUENT, Numerically simulation is investigated for Youngshou power plant. Under the constant ambient temperature, the effects of different wind speed and wind direction on the thermal flow field are qualitatively considered. It was found that when considering about the existing and normally operating power plants, the thermal flow field is more sensitive to wind direction and wind speed. Based on the above results, three improved measures such as: increasing the wind-wall height and accelerating the rotational speed of the fans near the edge of the ACC platform and lengthen or widen the platform are developed to effectively improving the thermal flow field, and enhanced the heat dispersal of ACC.


Author(s):  
A Koichi Hayashi ◽  
Kodai Shimomura ◽  
Nobuyuki Tsuboi ◽  
Kohei Ozawa ◽  
Nicolas H. Jourdaine ◽  
...  
Keyword(s):  

Author(s):  
Dong Ye ◽  
Xiaoxiang Wang ◽  
Runxian Wang ◽  
Shujie Gao ◽  
Hui Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document