scholarly journals Performance of the Runge-Kutta methods in solving a mathematical model for the spread of dengue fever disease

2019 ◽  
Author(s):  
Yulius Keremata Lede ◽  
Sudi Mungkasi
2010 ◽  
Vol 159 ◽  
pp. 125-128
Author(s):  
A. Parshuta ◽  
V. Chitanov ◽  
Lilyana Kolaklieva ◽  
Roumen Kakanakov

The real electro-discharge polishing (EDP) system has been presented by an equivalent electrical scheme and described by a corresponded equation system. The Runge-Kutta-Merson method with automatically changed step is used for the numerical solution the equation system. The current through the resistor equivalent to the steam gas wrapper is defined with an I-V characteristic obtained by the method of multi-interval quadratic interpolation-approximation. A mathematical model of the power supply-load system has been realized in Basic and Matlab® languages. On the base of the developed modelling conditions limiting the current and voltage overload in the EDP system have been determined depending on the maximum polished area and the electrolyte temperature.


Author(s):  
Felix Yakubu Eguda ◽  
Andrawus James ◽  
Sunday Babuba

Differential Transformation Method (DTM) is a very effective tool for solving linear and non-linear ordinary differential equations. This paper uses DTM to solve the mathematical model for the dynamics of Dengue fever in a population. The graphical profiles for human population are obtained using Maple software. The solution profiles give the long term behavior of Dengue fever model which shows that treatment plays a vital role in reducing the disease burden in a population.


2020 ◽  
Vol 17 (2) ◽  
pp. 238-248
Author(s):  
Resmawan ◽  
M Eka ◽  
Nurwan ◽  
N Achmad

ABSTRACT This paper discusses the mathematical model of drug users with education. Optimal control theory was used on this model with education as a control to achieve the goal of minimizing the number of drug users. The optimal control problem was analyzed using Pontryagin’s minimum principle and performed numerical simulation by using a 4th-order Runge-Kutta method. Based on the numerical simulation, there was a change in the number in each population which caused the population with education to increase, and control with education resulted in the reduced number of drug users. Keywords: Optimal control; mathematical model; drug users; education   ABSTRAK Artikel ini membahas tentang model matematika penyebaran pengguna narkoba dengan faktor edukasi. Teori kontrol optimal diterapkan pada model ini dengan pemberian kontrol berupa edukasi dengan tujuan untuk meminimumkan jumlah pengguna narkoba. Kontrol optimal dianalisis menggunakan Prinsip Minimum Pontryagin dan dilakukan simulasi numerik dengan menggunakan metode Runge-Kutta orde 4. Berdasarkan simulasi diperoleh bahwa terjadi perubahan jumlah di tiap populasi dan mengakibatkan jumlah populasi dengan edukasi bertambah, serta pemberian kontrol dengan edukasi mengakibatkan jumlah pengguna narkoba berkurang. Kata kunci       : Kontrol optimal; model matematika; pengguna narkoba; edukasi


1993 ◽  
Vol 115 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Ibrahim Olwi ◽  
Adel Khalifa

A detailed study of a solar cooker used for meat grilling was performed. Experiments were undertaken to test the effects of several parameters on the cooker performance. A mathematical model for the solar grill was developed. Heat balance equations were solved using the fourth-order Runge-Kutta technique. It was concluded that an air-tight oven with double glazing and maximum meat charge will give the best performance and highest efficiency for the solar grill.


2021 ◽  
Vol 1752 (1) ◽  
pp. 012004
Author(s):  
W Sanusi ◽  
M I Pratama ◽  
M Rifandi ◽  
S Sidjara ◽  
Irwan ◽  
...  

2015 ◽  
Vol 35 (6) ◽  
pp. 587-596 ◽  
Author(s):  
Saeide S. Badieyan ◽  
Mohsen Janmaleki

Abstract Electrospinning is an efficient, versatile, and straightforward technique involving the fabrication of very thin fibers from a rich variety of materials. Despite several promising applications, the remaining problem with electrospinning is the unpredictable deposition of the nanofibers. In this study, a mathematical model for a novel magnetic electrospinning process was established on the basis of a set of equations. Then, the model was utilized to analyze the behavior of the created polymer jet numerically using the Runge-Kutta method. The jet was assumed to consist of a number of discrete charged particles connected by viscoelastic segments. The results showed that exerting an appropriate magnetic field (MF) could significantly decrease the radius and the instability of the whipping circles. After fixing the instability as far as possible, it was demonstrated that a properly applied perpendicular MF could largely adjust the target of the polymer jet on the collector.


Author(s):  
Mikhail Alekseev ◽  
Evgeny Savenkov

Abstract The work is devoted to the application of Runge–Kutta discontinuous Galerkin (RKDG) method for solving Baer–Nunziato hyperbolic model for nonequilibrium two-phase flows. The approach is based on the application of the simple WENO limiter directly to the conservative variables. Mathematical model and the corresponding numerical algorithm are described. The results of numerical simulations for 1D and 2D tests are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document