Path integral treatment for the one‐dimensional Natanzon potentials

1993 ◽  
Vol 34 (4) ◽  
pp. 1257-1269 ◽  
Author(s):  
L. Chetouani ◽  
L. Guechi ◽  
A. Lecheheb ◽  
T. F. Hammann
1992 ◽  
Vol 45 (14) ◽  
pp. 7850-7871 ◽  
Author(s):  
Z. Y. Weng ◽  
D. N. Sheng ◽  
C. S. Ting ◽  
Z. B. Su

2019 ◽  
Vol 34 (30) ◽  
pp. 1950246
Author(s):  
Hassene Bada ◽  
Mekki Aouachria

In this paper, the propagator of a two-dimensional Dirac oscillator in the presence of a uniform electric field is derived by using the path integral technique. The fact that the globally named approach is used in this work redirects, beforehand, our search for the propagator of the Dirac equation to that of the propagator of its quadratic form. The internal motions relative to the spin are represented by two fermionic oscillators, which are described by Grassmannian variables, according to Schwinger’s fermionic model. Once the integration over the anticommuting variables (Grassmannian variables) is accomplished, the problem becomes the one of finding a non-relativistic propagator with only bosonic variables. The energy spectrum of the electron and the corresponding eigenspinors are also obtained in this work.


Author(s):  
Arkady A. Tseytlin

We discuss possible definition of open string path integral in the presence of additional boundary couplings corresponding to the presence of masses at the ends of the string. These couplings are not conformally invariant implying that as in a non-critical string case one is to integrate over the one-dimensional metric or reparametrizations of the boundary. We compute the partition function on the disc in the presence of an additional constant gauge field background and comment on the structure of the corresponding scattering amplitudes.


1995 ◽  
Vol 10 (12) ◽  
pp. 985-989 ◽  
Author(s):  
J. GRUNDBERG ◽  
T.H. HANSSON

We derive an su (1, 1) coherent state path integral formula for a system of two one-dimensional anyons in a harmonic potential. By a change of variables we transform this integral into a coherent states path integral for a harmonic oscillator with a shifted energy. The shift is the same as the one obtained for anyons by other methods. We justify the procedure by showing that the change of variables corresponds to an su (1, 1) version of the Holstein-Primakoff transformation.


1997 ◽  
Vol 12 (30) ◽  
pp. 5387-5396 ◽  
Author(s):  
D. G. C. Mckeon

It has been shown how the quantum mechanical path integral can be used to do perturbative calculations in both quantum and thermal field theory to any order of the loop expansion. However, it is not readily apparent how gauge invariance is made manifest in this approach; in this paper we demonstrate how the vacuum polarization in electrodynamics at one-loop order is in fact transverse. We employ the one-dimensional Green's function [Formula: see text] in conjunction with an integration-by-parts procedure akin to that used by Strassler and Bern and Kosower. Surface terms in this approach are all zero. We obtain the high temperature expansion for the vacuum polarization in the static limit.


1999 ◽  
Vol 02 (04) ◽  
pp. 381-407 ◽  
Author(s):  
ELEONORA BENNATI ◽  
MARCO ROSA-CLOT ◽  
STEFANO TADDEI

We use a path integral approach for solving the stochastic equations underlying the financial markets, and show the equivalence between the path integral and the usual SDE and PDE methods. We analyze both the one-dimensional and the multi-dimensional cases, with point dependent drift and volatility, and describe a covariant formulation which allows general changes of variables. Finally we apply the method to some economic models with analytical solutions. In particular, we evaluate the expectation value of functionals which correspond to quantities of financial interest.


Sign in / Sign up

Export Citation Format

Share Document