Path integral treatment of the one-dimensional Klein–Gordon oscillator with minimal length

2011 ◽  
Vol 84 (4) ◽  
pp. 045019 ◽  
Author(s):  
Y Chargui ◽  
A Trabelsi
1993 ◽  
Vol 34 (4) ◽  
pp. 1257-1269 ◽  
Author(s):  
L. Chetouani ◽  
L. Guechi ◽  
A. Lecheheb ◽  
T. F. Hammann

2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


2007 ◽  
Vol 56 (2) ◽  
pp. 1041
Author(s):  
Li Mi-Shan ◽  
Tian Qiang

1992 ◽  
Vol 45 (14) ◽  
pp. 7850-7871 ◽  
Author(s):  
Z. Y. Weng ◽  
D. N. Sheng ◽  
C. S. Ting ◽  
Z. B. Su

2011 ◽  
Vol 84 (3) ◽  
pp. 037001 ◽  
Author(s):  
Abdelmalek Boumali ◽  
Abdelhakim Hafdallah ◽  
Amina Toumi

2019 ◽  
Vol 34 (30) ◽  
pp. 1950246
Author(s):  
Hassene Bada ◽  
Mekki Aouachria

In this paper, the propagator of a two-dimensional Dirac oscillator in the presence of a uniform electric field is derived by using the path integral technique. The fact that the globally named approach is used in this work redirects, beforehand, our search for the propagator of the Dirac equation to that of the propagator of its quadratic form. The internal motions relative to the spin are represented by two fermionic oscillators, which are described by Grassmannian variables, according to Schwinger’s fermionic model. Once the integration over the anticommuting variables (Grassmannian variables) is accomplished, the problem becomes the one of finding a non-relativistic propagator with only bosonic variables. The energy spectrum of the electron and the corresponding eigenspinors are also obtained in this work.


2020 ◽  
Vol 98 (10) ◽  
pp. 939-943
Author(s):  
Eduardo López ◽  
Clara Rojas

We present a study of the one-dimensional Klein–Gordon equation by a smooth barrier. The scattering solutions are given in terms of the Whittaker Mκ,μ(x) function. The reflection and transmission coefficients are calculated in terms of the energy, the height, and the smoothness of the potential barrier. For any value of the smoothness parameter we observed transmission resonances.


Author(s):  
Arkady A. Tseytlin

We discuss possible definition of open string path integral in the presence of additional boundary couplings corresponding to the presence of masses at the ends of the string. These couplings are not conformally invariant implying that as in a non-critical string case one is to integrate over the one-dimensional metric or reparametrizations of the boundary. We compute the partition function on the disc in the presence of an additional constant gauge field background and comment on the structure of the corresponding scattering amplitudes.


Sign in / Sign up

Export Citation Format

Share Document