A limitation to the analogy between pure electron plasmas and two‐dimensional inviscid fluids

1993 ◽  
Vol 5 (12) ◽  
pp. 4295-4298 ◽  
Author(s):  
A. J. Peurrung ◽  
J. Fajans
2013 ◽  
Vol 87 (6) ◽  
Author(s):  
F. Lepreti ◽  
M. Romé ◽  
G. Maero ◽  
B. Paroli ◽  
R. Pozzoli ◽  
...  

This paper is concerned mainly with incompressible inviscid fluid sheets but the incompressible linearly viscous fluid sheet is also considered. Our development is based on a direct formulation using the two dimensional theory of directed media called Cosserat surfaces . The first part of the paper deals with the formulation of appropriate nonlinear equations (which may include the effects of gravity and surface tension) governing the two dimensional motion of incompressible inviscid media for two categories, namely those ( a ) for two dimensional flows confined to a plane perpendicular to a specified direction and ( b ) for propagation of fairly long waves in a stream of variable initial depth. The latter development is a generalization of an earlier direct formulation of a theory of water waves when the fixed bottom of the stream is level (Green, Laws & Naghdi 1974). In the second part of the paper, special attention is given to a demonstration of the relevance and applicability of the present direct formulation to a variety of two dimensional problems of inviscid fluid sheets. These include, among others, the steady motion of a class of two-dimensional flows in a stream of finite depth in which the bed of the stream may change from one constant level to another, the related problem of hydraulic jumps, and a class of exact solutions which characterize the main features of the time-dependent free surface flows in the three dimensional theory of incompressible inviscid fluids.


2018 ◽  
Vol 848 ◽  
pp. 256-287 ◽  
Author(s):  
N. C. Hurst ◽  
J. R. Danielson ◽  
D. H. E. Dubin ◽  
C. M. Surko

The dynamics of two-dimensional (2-D) ideal fluid vortices is studied experimentally in the presence of an irrotational strain flow. Laboratory experiments are conducted using strongly magnetized pure electron plasmas, a technique which is made possible by the isomorphism between the drift–Poisson equations describing plasma dynamics transverse to the field and the 2-D Euler equations describing an ideal fluid. The electron plasma system provides an excellent opportunity to study the dynamics of a 2-D Euler fluid due to weak dissipation and weak 3-D effects, simple diagnosis and precise control. The plasma confinement apparatus used here was designed specifically to study vortex dynamics under the influence of external flow by applying boundary conditions in two dimensions. Additionally, vortex-in-cell simulations are carried out to complement the experimental results and to extend the parameter range of the studies. It is shown that the global dynamics of a quasi-flat vorticity profile is in good quantitative agreement with the theory of a piecewise-constant elliptical patch of vorticity, including the equilibria, dynamical orbits and stability properties. Deviations from the elliptical patch theory are observed for non-flat vorticity profiles; they include inviscid damping of the orbits and modified stability limits. The dependence of these phenomena on the flatness of the initial profile is discussed. The relationship of these results to other theoretical, numerical and experimental studies is also discussed.


1975 ◽  
Vol 18 (7) ◽  
pp. 803 ◽  
Author(s):  
C. E. Seyler ◽  
Yehuda Salu ◽  
David Montgomery ◽  
Georg Knorr

2013 ◽  
Author(s):  
M. Romé ◽  
F. Lepreti ◽  
G. Maero ◽  
R. Pozzoli ◽  
A. Vecchio ◽  
...  

1998 ◽  
Vol 361 ◽  
pp. 275-296 ◽  
Author(s):  
LAWRENCE K. FORBES ◽  
GRAEME C. HOCKING

The steady simultaneous withdrawal of two inviscid fluids of different densities in a duct of finite height is considered. The flow is two-dimensional, and the fluids are removed by means of a line sink at some arbitrary position within the duct. It is assumed that the interface between the two fluids is drawn into the sink, and that the flow is uniform far upstream. A numerical method based on an integral equation formulation yields accurate solutions to the problem, and it is shown that under normal operating conditions, there is a solution for each value of the upstream interface height. Numerical solutions suggest that limiting configurations exist, in which the interface is drawn vertically into the sink. The appropriate hydraulic Froude number is derived for this situation, and it is shown that a continuum of solutions exists that are supercritical with respect to this Froude number. An isolated branch of subcritical solutions is also presented.


2008 ◽  
Vol 15 (4) ◽  
pp. 042312
Author(s):  
Dastgeer Shaikh ◽  
P. K. Shukla

Sign in / Sign up

Export Citation Format

Share Document