scholarly journals GW/BSE Nonadiabatic Dynamics Simulations on Excited-State Relaxation Processes of Zinc Phthalocyanine-Fullerene Dyads: Roles of Bridging Chemical Bonds

2018 ◽  
Vol 20 (9) ◽  
pp. 6524-6532 ◽  
Author(s):  
Meng Che ◽  
Yuan-Jun Gao ◽  
Yan Zhang ◽  
Shu-Hua Xia ◽  
Ganglong Cui

Pigment Yellow 101 (PY101) is widely used as a typical pigment due to its excellent excited-state properties.


2012 ◽  
Vol 137 (22) ◽  
pp. 22A503 ◽  
Author(s):  
Mario Barbatti ◽  
Zhenggang Lan ◽  
Rachel Crespo-Otero ◽  
Jaroslaw J. Szymczak ◽  
Hans Lischka ◽  
...  

2015 ◽  
Vol 17 (15) ◽  
pp. 9687-9697 ◽  
Author(s):  
Shu-Hua Xia ◽  
Bin-Bin Xie ◽  
Qiu Fang ◽  
Ganglong Cui ◽  
Walter Thiel

The combined electronic structure computations and nonadiabatic dynamics simulations show that excited-state intramolecular proton transfer to carbon atoms can be ultrafast.


2019 ◽  
Vol 21 (26) ◽  
pp. 14073-14079 ◽  
Author(s):  
Xiaojuan Pang ◽  
Chenwei Jiang ◽  
Weiwei Xie ◽  
Wolfgang Domcke

We performed the excited-state dynamics simulations for pyridine–water clusters and found the more water molecules involved in the cluster, the higher efficiency the water-splitting reaction has, which is qualitatively in consistent with a recent gas-phase experimental observations.


2015 ◽  
Vol 17 (12) ◽  
pp. 7787-7799 ◽  
Author(s):  
Daniele Fazzi ◽  
Mario Barbatti ◽  
Walter Thiel

Nonadiabatic excited-state dynamics reveal the exciton relaxation processes in oligothiophenes. Ultrafast deactivation and exciton localization are predicted to occur within 200 fs, involving bond stretching, ring puckering, and torsional oscillations.


2021 ◽  
Vol 23 (14) ◽  
pp. 8525-8540
Author(s):  
Mudong Feng ◽  
Michael K. Gilson

Ground-state and excited-state molecular dynamics simulations shed light on the rotation mechanism of small, light-driven molecular motors and predict motor performance. How fast can they rotate; how much torque and power can they generate?


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Valeriu Scutelnic ◽  
Shota Tsuru ◽  
Mátyás Pápai ◽  
Zheyue Yang ◽  
Michael Epshtein ◽  
...  

AbstractElectronic relaxation in organic chromophores often proceeds via states not directly accessible by photoexcitation. We report on the photoinduced dynamics of pyrazine that involves such states, excited by a 267 nm laser and probed with X-ray transient absorption spectroscopy in a table-top setup. In addition to the previously characterized 1B2u (ππ*) (S2) and 1B3u (nπ*) (S1) states, the participation of the optically dark 1Au (nπ*) state is assigned by a combination of experimental X-ray core-to-valence spectroscopy, electronic structure calculations, nonadiabatic dynamics simulations, and X-ray spectral computations. Despite 1Au (nπ*) and 1B3u (nπ*) states having similar energies at relaxed geometry, their X-ray absorption spectra differ largely in transition energy and oscillator strength. The 1Au (nπ*) state is populated in 200 ± 50 femtoseconds after electronic excitation and plays a key role in the relaxation of pyrazine to the ground state.


2016 ◽  
Vol 18 (1) ◽  
pp. 403-413 ◽  
Author(s):  
Bin-Bin Xie ◽  
Shu-Hua Xia ◽  
Xue-Ping Chang ◽  
Ganglong Cui

Sequential vs. concerted S1 relaxation pathways.


Sign in / Sign up

Export Citation Format

Share Document