Removal toxic materials from refinery wastewater by using low cost materials as adsorbent

2020 ◽  
Author(s):  
Ma’aly Nasrat ◽  
Rafi Jamal
2020 ◽  
Vol 19 (1) ◽  
pp. 105-112
Author(s):  
Ausra Mazeikiene ◽  
Zineb Chaouki ◽  
Hicham Zaitan ◽  
Mostapha Nawdali ◽  
Saulius Vasarevicius

2020 ◽  
Vol 10 (28) ◽  
Author(s):  
Ouafae Dkhissi ◽  
Mohammed Chatoui ◽  
Ahmed El Hakmaoui ◽  
Meriem Abouri ◽  
Yassine Kadmi ◽  
...  

Background. Refinement of crude vegetable oil generates a large amount of wastewater and is a source of water pollution due to the presence of surfactants and phenols. Phenols are toxic aromatic compounds that can be lethal to fauna and flora, entraining the deceleration or blocking of the self-purification of biological treatments. In addition, surfactants can limit biological processes by inhibiting microorganisms that degrade organic matter. Objectives. The aim of the present study was to evaluate the treatment of refinery rejects loaded with phenols and detergents by coagulation flocculation using cactus pads (genus Opuntia) as a bio-flocculant and 30% iron(III) chloride (FeCl3) for surfactant and phenol removal. In addition, operating costs were evaluated for these pollution mitigation methods. Methods. The effectiveness of cactus pads as a bio-flocculant and 30% FeCl3 for surfactant and phenol removal were studied using a jar test. The study was conducted on vegetable oil refinery wastewater from a refinery company in Casablanca, Morocco. Results. The pollution load in wastewater varied widely from day to day. We evaluated the effect of cactus juice and 30% FeCl3 on high and low pollution loads. Opuntia pads showed a favorable potential for the treatment of low pollution load wastewater, with 78% and 90% of surfactant and phenol removed, respectively. However, the removal of high pollution load was less effective (42% and 41% removal of surfactant and phenol, respectively). The turbidity of low and high pollution load was reduced by 98.85% and 86%, respectively. The results demonstrate that 30% FeCl3 can effectively treat both low and high pollution loads (90% and 89% phenol removal, respectively, and 90% and 70% surfactant removal, respectively (optimal concentration 1.48 g/l). The turbidity was reduced by over 96% for both high and low pollutants. Conclusions. The results of the present study indicate that cactus as a natural flocculant and reject rich in FeCl3 could be effectively used for the low-cost effective treatment of crude vegetable oil refinery rejects. Competing Interests. The authors declare no competing financial interests


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Y. Mazhdi ◽  
S. M. Hamidi

AbstractVarious efforts have been made to detect minimum amounts of any toxic materials in water or the neurotoxic effect of venom (Odontobuthus Doriae Scorpion) in the human’s blood serum nerve by high-sensitivity, accurate, and low-cost sensors in order to enhance life style. Therefore, the present study was done to investigate reliability of two-dimensional plasmonic structure and circular dichroism (CD) in toxic samples in order to measure and determine venom concentrations and its neurotoxic effect on humans҆ blood serum Neurotransmitter analytes. Our results confirmed dependency of CD signal to neurotoxic effect of venom concentrations and good sensitivity of this sensor with the help of achiral plasmonic structure.


Author(s):  
Rafiq Mulla ◽  
M. K. Rabinal

AbstractHerein, copper oxide/copper sulfide (CuO/CuxS) composites have been prepared by treating CuO with thiourea by an aqueous hydrothermal route and their thermoelectric properties are studied. The electrical conductivity is improved with the increase in thiourea content, as a result, thermoelectric power factor increased from 10–4 to 101 µW m−1 K−2, and thermal conductivity of the CuO is also found to decrease with thiourea treatment. A detailed analysis indicated that these changes are due to the formation of copper sulfide (CuxS) in the CuO compound; a small fraction of electrically good conducting CuxS in the bulk CuO has produced composites with better electrical conductivity. These low-cost and non-toxic materials can be useful in thermoelectric energy conversion applications.


Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
J. D. Muzzy ◽  
R. D. Hester ◽  
J. L. Hubbard

Polyethylene is one of the most important plastics produced today because of its good physical properties, ease of fabrication and low cost. Studies to improve the properties of polyethylene are leading to an understanding of its crystalline morphology. Polyethylene crystallized by evaporation from dilute solutions consists of thin crystals called lamellae. The polyethylene molecules are parallel to the thickness of the lamellae and are folded since the thickness of the lamellae is much less than the molecular length. This lamellar texture persists in less perfect form in polyethylene crystallized from the melt.Morphological studies of melt crystallized polyethylene have been limited due to the difficulty of isolating the microstructure from the bulk specimen without destroying or deforming it.


Author(s):  
J. Temple Black

In ultramicrotomy, the two basic tool materials are glass and diamond. Glass because of its low cost and ease of manufacture of the knife itself is still widely used despite the superiority of diamond knives in many applications. Both kinds of knives produce plastic deformation in the microtomed section due to the nature of the cutting process and microscopic chips in the edge of the knife. Because glass has no well defined slip planes in its structure (it's an amorphous material), it is very strong and essentially never fails in compression. However, surface flaws produce stress concentrations which reduce the strength of glass to 10,000 to 20,000 psi from its theoretical or flaw free values of 1 to 2 million psi. While the microchips in the edge of the glass or diamond knife are generally too small to be observed in the SEM, the second common type of defect can be identified. This is the striations (also termed the check marks or feathers) which are always present over the entire edge of a glass knife regardless of whether or not they are visable under optical inspection. These steps in the cutting edge can be observed in the SEM by proper preparation of carefully broken knives and orientation of the knife, with respect to the scanning beam.


Author(s):  
H. O. Colijn

Many labs today wish to transfer data between their EDS systems and their existing PCs and minicomputers. Our lab has implemented SpectraPlot, a low- cost PC-based system to allow offline examination and plotting of spectra. We adopted this system in order to make more efficient use of our microscopes and EDS consoles, to provide hardcopy output for an older EDS system, and to allow students to access their data after leaving the university.As shown in Fig. 1, we have three EDS systems (one of which is located in another building) which can store data on 8 inch RT-11 floppy disks. We transfer data from these systems to a DEC MINC computer using “SneakerNet”, which consists of putting on a pair of sneakers and running down the hall. We then use the Hermit file transfer program to download the data files with error checking from the MINC to the PC.


Author(s):  
T. P. Nolan

Thin film magnetic media are being used as low cost, high density forms of information storage. The development of this technology requires the study, at the sub-micron level, of morphological, crystallographic, and magnetic properties, throughout the depth of the deposited films. As the microstructure becomes increasingly fine, widi grain sizes approaching 100Å, the unique characterization capabilities of transmission electron microscopy (TEM) have become indispensable to the analysis of such thin film magnetic media.Films were deposited at 225°C, on two NiP plated Al substrates, one polished, and one circumferentially textured with a mean roughness of 55Å. Three layers, a 750Å chromium underlayer, a 600Å layer of magnetic alloy of composition Co84Cr14Ta2, and a 300Å amorphous carbon overcoat were then sputter deposited using a dc magnetron system at a power of 1kW, in a chamber evacuated below 10-6 torr and filled to 12μm Ar pressure. The textured medium is presently used in industry owing to its high coercivity, Hc, and relatively low noise. One important feature is that the coercivity in the circumferential read/write direction is significandy higher than that in the radial direction.


Sign in / Sign up

Export Citation Format

Share Document